## 50 years crystal growth technology

Hans J. Scheel

Scheel Consulting www.hans-scheel.ch

Swiss Office: Bromattenweg 2, 3805 Goldswil b. Interlaken, Switzerland Greek Office: Poulithra, 22300 Leonidio, Greece Email hans.scheel@bluewin.ch

The recognition of my work by the DGKK-Preis 2017 is very much appreciated, and I thank the award committee. I sincerely thank for the many kinds of support and to former colleagues, visiting scientists and co-workers without them the results listed in the following Table could not be achieved.

- 1. First crystals of organic pigment dye quinacridone (Chinacridon), condition for structural research (1966).
- 2. Explanation of the formation of "Pyroceram" glass ceramics by phase separation causing nucleation and bulk crystallization, with G. Bayer, O.W. Flörke and W. Hoffmann (1966).
- 3. First large crystals of ferromagnetic semiconductor NaCrS<sub>2</sub> from Na<sub>2</sub>S<sub>x</sub> solvent (flux) used also for growth of many other sulfides like NaInS<sub>2</sub>, KCrS<sub>2</sub>, CdS, ZnS, PbS, FeS<sub>2</sub>, CoS<sub>2</sub>, NiS<sub>2</sub>, MnS etc. (1974).
- 4. Forced convection for nucleation control and fast stable growth rates from high-temperature solutions by Accelerated Crucible Rotation Technique ACRT (1971,[1]). Hydrodynamics with E.O.Schulz-DuBois. Numerical simulation by Mihelcic et al., Kakimoto et al. and Derby et al.
- 5. Evaluation of maximum stable growth rates for inclusion-free crystals (with D. Elwell 1972, [1]).
- 6. Ultra-sensitive temperature sensor based on Pt6 versus Pt30 thermopyle with C.H.West (1973).
- 7. Slider-free LPE process for superlattices of p-n-GaAs (1977) and transition to facetting: atomically flat surfaces (1980) proven by Nomarski and by scanning tunneling microsopy (with G.Binnig and H. Rohrer), theory with A. Chernov (1995).
- 8. "Inherent" crystal growth problem of striations solved by ACRT and optimized T-control for flux growth of striation-free KTa<sub>1-x</sub>Nb<sub>x</sub>O<sub>3</sub> (KTN) solid solutions (with D. Rytz 1982), theory with R.H. Swendsen (2001), [1].
- 9. Flame-fusion (Verneuil) growth of SrTiO<sub>3</sub> with J. G. Bednorz (1977).
- 10. Growth of dislocation-free SrTiO<sub>3</sub> crystals (with J. Hutton and R.J. Nelmes 1981).
- 11. Distribution coefficient k=1 achieved in growth from high-temperature solutions (with R.H.Swendsen 2001).
- 12. First growth of colorless Anatase (TiO<sub>2</sub>) crystals by chemical vapor transport (with M. Graetzel et al. 1996).
- 13. First free crystals of high-temperature superconductor YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> and thick YBCO crystals grown from high-temperature solutions (with F. Licci, W. Sadowski 1988, 1989, [1]).
- 14. Leading-edge growth mechanism discovered on thin YBCO plates explaining growth of majority of thin plates in unstable growth regime (with Ph. Niedermann 1989, confirmed by H. Müller-Krumbhaar).
- 15. LPE of YBCO and NdBCO (with C. Klemenz 1992-1996, parallel with P. Görnert in Jena).
- 16. LPE of GaN (with C. Klemenz 2000).
- 17. Definition of 8 epitaxial growth modes (1997, in [1] and [2] 2007).
- Construction of versatile Verneuil furnace; ultra-pure glovebox system with  $O_2$  and  $H_2O$  below detection limit; Czochralski model with four visualization methods.

-Organization of First Conference on Vapor Growth & Epitaxy 1970 (with E. Kaldis), First European Conference on Crystal Growth 1976 (with first poster sessions, with E. Kaldis), Four International Workshops on Crystal Growth Technology 1998-2008 IWCGT-1-4 (with T. Fukuda, D. Witter, P. Dutta, P. Capper, S. Uda, J. Friedrich as co-chairmen).

After brief review of the listed topics, general aspects of crystal growth for research in solid-state physics including required sufficient characterization, and education of crystal technologists for energy [3], learning about optimum crystal growth method and conditions, will be discussed.

- [1] D. Elwell and H.J. Scheel, Crystal Growth from High-Temperature Solutions, Academic Press 1975, e-book with additional chapter and 2 appendices in <a href="https://www.hans-scheel.ch">www.hans-scheel.ch</a>
- [2] P. Capper and M. Mauk, Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, Wiley 2007, 1 19.
- [3] F.J. Bruni and H.J. Scheel, editors: WHITE PAPER: The technology of single crystals and epitaxial layers (15 April 2013), in www.hans-scheel.ch.