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6.1. Stability of Growth

‘I'he aim of most crystal-growth experiments is to produce crystals which
are sufficiently large and perfect for some measurement or application.
I'he erystal grower is therefore particularly concerned to establish, cither
by trial and error or by the application of theoretical principles, the condi-
tions under which such large and relatively perfect crystals may be produced.

Stable growth of a crystal from solution may be defined as growth
without the entrapment at any stage of solvent inclusions. Alternative
definitions of stability are possible and growth-rate fluctuations will always
occur on some scale. Large fluctuations may facilitate inclusion formation
or compositional variations and are likely to have an adverse effect on the
crystal quality.

The problem which is normally considered in a theoretical approach to
the calculation of conditions for stable growth is that of morphological
stability, or whether a specified shape is stable against small perturbations.
This problem differs from the related question of whether a given shape
or habit is preserved as the crystal grows. Both aspects are of importance
and will be discussed in this chapter. Reviews on morphological stability
have recently been published by Parker (1970) and by Chernov (1972).

Perturbation analyses and related studies are concerned with simple
shapes but have given a number of results which are of great relevance in
the design of experiments. The most important conclusions are that the
stability tends to decrease as the crystal increases in size, and the concept
of constitutional supercooling. Both these results of stability theory have
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238 CRYSTAL GROWTH FROM HIGH-TEMPERATURE SOLUTIONS

been appreciated for some years but their relation to experiments on high-
temperature solution has received comparatively little attention and will
be stressed where possible.

Particular importance is attached in this chapter to the concept of a
maximum stable growth rate and its dependence on the growth conditions.
Practical considerations for the attainment of stable growth will be dis-
cussed in the later sections of the chapter.

6.1.1. Stability of the sphere and cylinder
Mullins and Sekerka (1963) used the perturbation method to examine the
stability of a spherical crystal with isotropic surface kinetics growing in a
supersaturated medium. They concluded that the sphere is stable against
perturbations only if its radius is less than a value of 7r*, where r* is the
radius of the critical nucleus. For a supersaturation of 109, the maximum
stable radius was calculated to be of the order of 0.1 um. Nichols and
Mullins (1965) and Coriell and Parker (1966) studied the effect of surface
diffusion on the stability of a spherical crystal and found that the maximum
stable radius is increased by a large factor. In the example considered by
Nichols and Mullins, this factor was of the order of 100 so that spheres
were estimated to be stable to a radius of about 102 cm.

Cahn (1967) included the effect of interface kinetics and of an anisotropic
surface tension. He found that the latter has no stabilizing effect but this
result is not surprising for a sphere since the anisotropy is not shape pre-
serving as it would be for a polyhedral crystal, and its main effect will be
to cause an anisotropy in the instability. The inclusion of interface kinetics
leads to an expression for the rate of increase of radius of the sphere given
by

dR F(n,,-n,)
dt 1+ FpR/D

where Fis a kinetic coefficient such that the lincar growth rate @ = F(n, - n,)
and the other symbols have been defined previously.

For small crystals the term FpR/D may be neglected and the growth
rate becomes F(n,, — n,). Since the diffusion coefficient D does not appear
in the expression for dR/d¢, growth is said to be interface controlled. The
interface concentration in this case is approximately the same as in the bulk
solution and growth should be stable since the concentration gradient in
the solution is approximately zero. At high values of R the increase of
radius is given by

(6.1)

aR_D
dt _PR Mgy n,

and the sphere becomes unstable as shown by Mullins and Sekerka (1963).
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This treatment therefore leads to the conclusion that the sphere will be
stable only up to a radius such that KpR/D~1. For D= 10 3%cm?*s !,
p=5gcem *and F=10 *cm *s ' g !, the maximum stable radius 1s only
of the order of 0.02 cm. Coriell and Parker (1967) performed a similar but
more quantitative calculation for both linear and quadratic interface kine-
tics. In the example they quoted, of salol growing from aqueous solution,
kinetic control increases the maximum size for stable growth by a factor
3000, to a value of (.5 cm.

The stability of a cylindrical crystal has been studied by Coriell and
Parker (1966) and is found to exhibit approximately the same behaviour as
that predicted for the sphere. Surface diffusion was estimated to increase
the maximum stable radius by a factor of about 40. Kotler and Tiller (1966)
included interface kinetics and found that the maximum radius is strongly
dependent on the undercooling and the kinetic coefficient.

The main conclusion to be drawn from these studies is that instability
tends to occur when the crystal reaches a critical size, which will be
increased by surface diffusion of solute and by interface kinetics. These
predictions must, however, be treated with great caution in their applica-
tion to solution growth because of the strong tendency of crystals to
develop habit faces. As a result of this tendency, it has not been found
possible to study the stability of spherical or cylindrical crystals in solution,
as for ice crystals in water (Hardy and Coriell, 1968). Greater significance
must therefore be attached to studies of polyhedral crystals and of a
single plane interface, which is treated in greater detail in the following
section.

6.1.2. Stability of a plane interface

A. Constitutional supercooling[supersaturation gradient. Perturbation treat-
ments of the stability of a planar crystal surface growing in a doped melt
were first given by Mullins and Sekerka (1964), Sekerka (1965) and
Voronkov (1965). When conduction of heat through the crystal is included,
the condition for stability may be written as

mn(l-ke K. (dT\ K, (dT
kD T K.+K, (d:: ) Tk (d:: ), : (6.2)

Here m 1s the slope of the liquidus curve, n the concentration of the
impurity in the bulk liquid, K the thermal conductivity and d7'/dz the
temperature gradient normal to the interface, with the suffices ¢ and /
referring to the crystal and liquid, respectively. k is the partition coefficient
which is defined as the ratio n./n, of the impurity concentration in the
crystal to that in the liquid, and which is normally less than unity. Equation
(6.2) could be extended to growth from very concentrated solutions where
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n. and #; would be the solvent concentrations in the crystal and solution,
respectively.

The condition expressed by Eqn (6.2) is closely related to the constitu-
tional supercooling criterion, introduced by Ivantsov (1951, 1952) as
“diffusional undercooling”’, by Rutter and Chalmers (1953) and quanti-
tatively by Tiller et al. (1953). As the crystal grows, impurities are rejected
at the crystal surface and so the impurity concentration in the liquid
immediately ahead of the interface becomes appreciably higher than that
in the bulk of the liquid (Fig. 6.1a). This accumulation of impurities
results in a depression of the equilibrium liquidus temperature 77,
(according to the phase diagram) as illustrated in Fig. 6.1(b). The actual
temperature distribution in the melt is as shown in the dashed line (1) of
Fig. 6.1(b) and any protuberance on the interface will tend to grow
(relative to the interface) since it will experience a higher supercooling.
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Fic. 6.1. (a) Impurity distribution and (b) equilibrium liquidus temperature
T'r ahead of an advancing interface in a doped melt.
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T'he region ahead of the interface is then unstable. Stable growth can
occur if the temperature gradient at the interface is increased as in (ii) of
Fig. 6.1(b), in which case the actual temperature ahead of the interface is
higher than the hiquidus.

"T'he condition for constitutional supercooling may be readily derived as

mn(1 - ke dT

kD ds (6.4)

which is tdentical with Eqn (6.2)if K, ~ 0, orif K, = K, and the latent heat
is zero. Lucid reviews of constitutional supercooling and of the modes of
unstable growth which can result have been given by Tiller (1963, 1970).
Experimental confirmation of the validity of the constitutional super-
cooling criterion for melt growth has been provided by Walton et /. (1955)
and Bardsley et al. (1961).

The similarity between growth from a doped melt and growth from
solution has been pointed out by White (1963). In the latter case solvent is
rejected by the growing crystal and there will inevitably be a gradient of
solute ahead of the interface due to local depletion by the cr_\;StaI. Tiller
(1968) has proposed the application of the constitutional supercooling
criterion to growth from solution by a modification of Eqn (6.3). Since the
solution normally contains a number () of solute constituents, the con-
dition for instability may be expressed by \\'riting for the growth rate:

- d! m(k:* — 1,
=D, /Z D D, l (6.4)

where D, 1s the diffusion coefficient of the solvent and m,, k*, n, and D,
refer to the solute constituent 7. The effective partition coefficient is

defined by
p# (n,’)
: a ri)”i 0

where n,' and 2}, are the concentration of 7 in the crystal and solution,
respectively. Tiller has calculated the ratio of the maximum stable growth
rate Tmax to the gradient (d7/dz) as a function of temperature for various
compound semiconductors and his results are shown in Fig. 6.2.

An alternative and much simpler calculation of the criterion for stable
growth in solution under diffusion-limited conditions may be obtained by
considering the condition for the appearance of a supersaturation gradient

-an increase in supersaturation ahead of the interface which may be a
consequence of solute diffusion (Elwell and Neate, 19715 Scheel and
Elwell, 1973a). T'he condition for instability is that a protuberance will
encounter a higher supersaturation as it advances so that at the interface,
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FiG. 6.2. Ratio of maximum stable growth rate to temperature gradient for
solution growth of some compound semiconductors (Tiller, 1968).

dn _ dn, .
F it o (6.5)

Now dn/dz is related to the linear growth rate by Eqn (4.13)

_P ds/.

and, for an idcal solution with n, = const exp (- ¢/RT),

_dn,, - qbn,_ dT

de  RT:dz °
Substitution into Eqn (6.5) gives the condition for instability as

s DT

" pRT?ds
which is substantially the same result as Eqn (6.4) for a single component.
Using typical values of D=10"*cm?*s~!, n,=1gem=3, p=5gcm3,

¢=70k] mole=! and 7'=1500°K, the maximum stable growth rate
according to Eqn (6.6) will be ¢max~10-* cm s~! for d7'/dz =10 deg cm!
or tmax~ 10~* cm s~! for d7'/dz =1 deg cm~'. The value of tmax/(dT/dz)~
10-? s~1 deg~! is typical of the values quoted by Tiller (Fig. 6.2).

(6.6)
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In practice crystals are grown at stable rates of the order of 10-% cm s-!
in temperature gradients of the order of 1 deg cm~'. It is therefore clear
that crystal growth from high-temperature solution normally occurs in a de-
stabilizing supersaturation gradient.

For stable growth to occur at rates much greater than those given by
Egn (6.6), it must be assumed that the supersaturation gradient must be
insufficient for a perturbation to nucleate (Wagner, 1954; Tiller and Kang,
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Fic. 6.3. (a) Solute concentration ahead of crystal growing in solution.
(b) Metastable region of supersaturation gradient. (T, corresponds to ii of Fig. 6.1.)
(Scheel and Elwell, 1973a.)

1968; O’Hara et al., 1968). The crystals may therefore be said to grow
in a metastable region of the supersaturation (or supercooling) gradient as
discussed by Scheel and Elwell (1973a). This region is analogous to the
normal metastable or Ostwald-Miers region and is illustrated in Fig. 6.3.1+
In Fig. 6.3(a) is shown the actual solute concentration 7, in front of the

+ The width of the boundary layer is denoted approximately in the diagrams.
The exact definition of 3 is that of Eqn (4.14).
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growing crystal for diffusion-controlled growth and the corresponding
liquidus temperature 7', is shown in Fig. 6.3(b). The significance of this
metastable region between 7', and 7'y is that a perturbation will not
nucleate (or will develop at a negligibly slow rate) so long as the temperature
Terr ahead of the crystal exceeds the limiting value. In the example shown,
growth will occur in the metastable region even if the temperature gradient
at the interface is zero. If, however, the requirement of conduction of the
heat of crystallization through the solution leads to a temperature distri-
bution below that of the dashed line Ty in Fig. 6.3(b), growth will be
unstable and the crystal will contain an appreciable concentration of
solvent inclusions.

By analogy with observations on the Ostwald-Miers region, it may be
expected that the width of the metastable supersaturation (supercooling)
gradient region will depend on such factors as the crystal-growth rate and
the degree of disturbance, particularly thermal or mechanical shock, to
which the solution is subjected.

An important question concerns the origin of the metastability and we
now consider in some detail the relative importance of the various stabi-
lizing factors which were not taken into account in the derivation of
Eqns (6.4) or (6.6). We consider first the results of a perturbation
approach.

B. Perturbation analysis. In view of the importance of the perturbation
method of stability analysis, a summary is given here of a simplified
treatment of the stability of a plane interface growing in solution, due to
Shewmon (19653).

Consider a plane crystal surface growing in a supersaturated solution
in the volume diffusion-controlled regime. Any protuberance on this
surface may be analysed into a number of sine waves of different wave-
length and it is convenient to discuss the stability condition in terms of
such sine waves. A protuberance of the interface such as that shown in
Fig. 6.4 will have components of the form

I o W

CRYSTAL

F1c. 6.4, Proturberance on plane crystal-solution interface.
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s e(t) sin wy (6.7)

where e is the time-dependent amplitude of the perturbation and the
wavelength is specified by w. The perturbation causes local changes in the
solute concentration at the surface, which is given by the Gibbs-Thomson
cquation. The local curvature is assumed to be d*z/dy? so that the equili-
brium concentration is specified by

n.=n.(1+ I'e(t)w? sin wy) (6.8)

where n,, is the equilibrium concentration per unit volume for a flat
surface, and I' is the capillary constant yF'y/RT. (As in Chapter 4, Vi, 1s
the molar volume of the solute and y the surface energy per unit area.)

An approximate solution may be obtained by assuming that the interface
is static, in which case the solute distribution obeys Laplace’s equation
Vin=10. The general solution to the latter equation for a sinusoidal inter-
face and a static solute gradient G = (dn/dz), , 1s

n(z, v)=A+ B exp (- wsz)e sin wy + Gz, (6.9)
The constants 4 and B are chosen to make Eqn (6.9) identical with
Eqn (6.8) at the interface, that is by equating coefficients with z=e sin wy.
T'his gives A =n,, and B=(n, I'w* - (), so that
n(z, y)=n,+(n,.l'w-G)exp (- wz)esin wy + Gs. (6.10)
T'he linear growth rate is then given by Eqn (4.13) as
D (dn

ds

P
The first term in Eqn (6.11) represents the growth rate z, in the absence
of any perturbation, and so the development of any perturbation relative
to the mean position of the surface is given by the second term as

) A [G + (G - n,, Tew?)we sin wy]. (6.11)
z=0 P

£ (6t D i 9 (6.12)
p )
so that
£=(1-n,Tw?G)wr,. (6.13)
€

The first term on the right-hand side of Eqn (6.13) may be interpreted
physically as being due to an increase in the concentration gradient in
front of the “‘hills” on the perturbed “valleys”. The second term is due to
the concentration gradients along the surface which cause solute transport
and so tend to smooth out the sinusoidal disturbance. The two effects
balance at a critical value of w, denoted w,, such that

wo=(Gn, T)"2. (6.14)
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If1c. 6.5, Rate of development of instability for various values of w (- 27/1).

Taking typical values of G/n, =1 em ' (19, supersaturation and o =10 *
em) and =310 %cem (Fy=40cm? mole ', =105 Jem 2 and 7T

1500°K) gives a value of @, =6 % 10% em-'. A plot in Fig. 6.5 of €€ for
various values of @ using the same parameters with 2, =10 * em s ' shows
that a particular wavelength will tend to become dominant if growth occurs
under unstable conditions. In the example chosen, the maximum value of
w 1s about 3 = 10% em ' so that the corresponding wavelength is in the
region of 20 pm. Some confirmation of this prediction is provided by the
surface structure of a GAAIO, crystal shown in Fig. 6.6, The surface shows

IF1G. 6.6, Periodic solvent inclusions on surface of GAAIO, due o interruption
of stirring at the end of growth experiment (Scheel and Elwell, 197 3a).
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an inclusion structure which exhibits a fine periodicity of approximately
30 pum. A transicent instability in this case resulted from the cessation of
stirring at the termination of growth prior to removal of the excess
solution.

For values of w greater than w,, € e is negative and so the perturbation
tends to decay; the interface is therefore unstable against perturbations
of relatively long wavelength. The stability range is increased if the solute
gradient G is small and if the capillary constant I' is large. Absolute
stability, for all values of w, requires that G = () which is incompatible with
volume diffusion (and would also require #,=0 under the conditions
assumed!).

Additional stability is obtained if surface diffusion of the solute is
included since this will tend to smooth out any disturbance by transporting
solute from the “hills” to the “valleys”. "T'he inclusion of surface diffusion
introduces an additional term so that Eqn (6.12) becomes

o D ( I'D. Aw?
éle=
p

D
where D, is the surface-diffusion coefficient and .1 the thickness of the
adsorption layer in which this diffusion occurs.

In the general case, the growth rate is determined partly by interface
kinetics and Eqn (6.10) will no longer be valid. If the linear growth rate is
specified in terms of the kinetic coefficient F such that = F(n; — n,), as in
Section 6.2, an extension of the analysis outlined above leads to an ex-
pression for the growth of the protuberance

- (1- F!f_,,,f{zc]wef',,
= (1+Dw/F)

G-n,lw* -

)w sin wy (6.15)

(6.16)

in which surface diffusion has been neglected. ‘T'his equation reduces to
Eqn (6.13) in the volume-diffusion regime where Do/ F 1,

It is seen that, according to this treatment, the condition for stability
is the same as in the diffusion-controlled case since the boundary between
€0 and €>0) is still given by Eqn (6.14). As Dw/F increases, so €/ez, will
decrease and the principal effect of kinetic control will be to reduce the
rate of development of the instability.

According to the above model, the instability condition applies to all
values of w below w, and therefore to all wavelengths above the corre-
sponding value A, =27/w,. However, the model must break down at long
wavelengths since it requires redistribution of solute due to a perturbation
of wavelength A over a distance of the order of A, This redistribution must
oceur by volume diffusion and so the model breaks down when A 2 (D7)'3,
where (D7)'"2 is the mean displacement due to diffusion. At higher values
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of A, stabilization will be present because of surface tension but there will
be no enhancement of the solute gradient to give instability. Since
(Dr)"*~35, the wavelength region over which growth is unstable will be
given by

1/2
53025 n("“&C ) . (6.17a)
Since G ~(on,/8) ~(on,,[d), this condition may alternatively be expressed as
s\
532 217(--0_—) . (6.17b)

An alternative stability condition is therefore that 2n(I'8/0)'2 -3 or, as is
equivalent,

Anl
g5~

The maximum supersaturation required by this condition is, however,
unreasonably low. If I"'>~3 x10-* cm and 8~10-2 ¢m as in the example
above, Eqn (6.18) requires that o<1 x 10-* which would correspond to an
extremely slow growth rate.

In summary, Shewmon’s treatment predicts that a planar crystal surface
is unstable towards perturbations above some critical value of the order of
10 pm. Stability is enhanced by surface diffusion but not by surface
kinetics, although the latter retards the development of the instability. The
main success of this approach is in the prediction of a periodic structure of
wavelength about 20 um when growth is unstable, but it does not vield a
criterion for stable growth which may be used in practice.

The effect of interface kinetics on the stability of a plane interface was
considered by Tarshis and Tiller (1967). They concluded that kinetics will
stabilize the interface, but only under source-limited growth conditions.

a -

(6.18)

C. Stabilization due to facetting. 'The most important factor which has
been neglected in the above treatment is the normal tendency of solution-
grown crystals to develop habit faces. Such faces have a characteristically
low energy and i1t may be expected that the development of a perturbation
on such faces will be more difficult than on non-habit faces since pro-
tuberances will involve the formation of surfaces of relatively high energy.
The stability of habit faces has been discussed qualitatively by O’Hara
et al. (1968), who consider both kinetic and capillarity effects. If growth
on a particular facet is controlled by a single active centre which generates
a growth spiral, then a perturbation which tends to increase the small angle
between the resulting vicinal face and the crystallographic habit face will
also increase the number of layer edges per unit area. The lateral motion
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of these edges will cause the surface to revert back towards the original
geometry with the separation between adjacent spiral arms given by 19r*
according to the BCI theory (see Chapter 4). Capillarity tends to stabilize
a facet when the growth is strongly anisotropic, particularly when the
energy minimum in the Wulff plot i1s very sharp. This effect can be en-
hanced by non-isotropic adsorption of impurities, which could explain
why the addition of impurities may sometimes result in improvement in
crystal quality.

The stability of polyhedral crystals has been considered in more detail
by Chernov (1972) in a review of morphological stability. Chernov
explains the stability of facetted crystals in terms of the anisotropy of the
surface processes. A ridge or hollow produced by some fluctuation on an
anisotropic surface has along its edges much higher kinetic coefficients
than at the vertex, so that it expands tangentially at a rapid rate relative to
the normal growth direction. T'his anisotropy invalidates the use of a
perturbation approach.

Of particular importance when polyhedral erystals (as distinet from a
plane surface of unspecified extent) are considered is the difference in
supersaturation between the corners and face centres. The vanation in
supersaturation across a crystal face was measured, for example, by Bunn
(1949) (see Chapter 4) and was found to be about 259, in the case of sodium
chlorate. According to Chernov, this supersaturation inhomogeneity is
compensated by the development of vicinal faces as indicated in Fig. 6.7.
The slope at the centre of the face to the crystallographic habit face must
differ from that at the corners by about 2° if the increased kinetic co-
efficient at the centre is to balance the lower supersaturation. The super-
saturation inhomogeneity increases as the crystal grows and the curvature

Supersaturation f
o

CRYSTAL

y —

FiG. 6.7. Supersaturation inhomogeneity and compensating curvature for a
crystal face (Chernov, 1972).
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of the crystal must also increase if the face is to remain stable. Chernov's
condition for instability is that the face centre attains some maximum
deviation from the simple crystallographic orientation such that the
kinetic coefficient becomes very large. This approach gives the maximum
length / of a crystal having N faces as

_ D(p, - p)) tan (z/N) (
ISR (6.19)

where p, and p; are the slope of the crystal face to the crystallographic habit
plane at the centre and edge, respectively. F is the kinetic coefficient, € a
measure of the difference in solute concentration between the edges and
the face centre and 6 represents the anisotropy in the growth kinetics. The
complex function f(6) depends on the anisotropy and also on the limiting
value of (p, — p;). Using typical values of the various parameters, Chernov
estimates /~10-2 cm for # =2 (a minimum value for a regular polyhedron),
and /=10-" cm for 8 =40. These values are clearly at variance with experi-
ment by one or two orders of magnitude.

A factor not considered by Chernov which could increase the maximum
size for stable growth is the tendency for dislocations to propagate in
bundles radiating either from a seed crystal or from the nucleation centre
towards the centre of the crystal faces rather than towards the corners.
This tendency is illustrated in Figs 4.28(a) and (b) which show the surface
of a large GdAIQO; crystal grown by spontaneous nucleation (Scheel and
Elwell, 1973b). The high concentration of defects at the centre of the face
is clearly correlated in extent with the dendritic core of the crystal, while
the outer regions of the face are relatively free from defects.

The main technique which has been used to demonstrate this tendency
of dislocation propagation towards face centres is that of X-ray topography,
which will be discussed in detail in Chapter 9. In the topograph shown in
Fig. 6.8, which is fairly typical, the dislocation bundles are revealed as
white streaks and the preferential propagation towards the face centres is
clearly noticeable.

If the crystal does contain a higher concentration of active sites near the
face centres, an enhanced departure from the habit plane will be un-
necessary and crystals will be able to grow to greater size than that pre-
dicted by Chernov without the development of excessive curvature.
However, the tendency illustrated in Figs. 4.28 and 6.8 is by no means
universal and alternative sources of stabilization must be considered.

Cahn (1967) also treated the stability of a habit face with growth by
layer propagation but took as his stability condition the requirement that
the supersaturation must not fall to zero at the face centre. By assuming
that the solute is transported over the surface only by volume diffusion,
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16, 6.8, N-ray topograph of triglveine sulphate crvstal showmg bundles of
dislocations radiating from the seed (Vergnoux et al., 1971).

Cahn arrived at an expression for the maximum size ot a crystal for stable
growth

[(:_2I I)
Tp

With: D=10"%em*s"", #,,—n.=53%10"2gem-% o=10-%¢ms' and
p=35gm cm ? Eqn (6.20) gives /=2 107 em which 1s again much too
small in relation to experiment.

The most likely cause of the large discrepancy between Chernov's or
Cahn’s treatment and experiment s in the assumption that the flow of
solvent between the edges and centre of the crystal faces occurs only by
volume diffusion. The principle that the difference in supersaturation
between the edges and centre of a face leads to instability 1s likely to be
correct, but convective How must be taken into account 1n any realistic
estimate of the maximum stable size. The importance of solution flow will

be considered in the next section.
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D. Velocity gradient. An alternative and attractively simple method of
treating the effect of surface kinetics on stability was proposed by Brice
(1969). If a crystal is growing in the z direction at a stable rate v, the
condition for stability proposed by Brice is that a projection will grow less
rapidly and a depression more rapidly than the rest of the surface. This
requires that the zelocity gradient should be negative, that is that

" <0. (6.21)

If it is assumed that the crystal is growing at a rate determined by the
BCF formula [Eqn (4.42a)] written in the form

e=A (”-“"”‘ ”')" T*exp (- BIRT),

then differentiation and substitution into Eqn (6.21) gives

?[(2 . B )d?'+ 2 dn 2np AT 0
T RT*/dz (n,,-n)ds (n, -n,)ds '

With pz/D substituted for dn/dz from Eqn (4.13), the stability condition
becomes

.. DdT[n.é o 1 B 22
S dz [RT” (e ”")<'r 'RTr)] 6-245)

which is the same as Eqn (6.6) except for the second term in the square
bracket. This term in fact reduces the maximum stable growth rate by
about 35, if B is taken to have a value of 20 kJ/mole. It would be of
interest to extend this model to treat the stability of a rectangular pro-
tuberance considering both its movement along and normal to the crystal
surface, and the results of the above one-dimensional approach must be
treated with caution. The various treatments of the effect of interface
kinetics are seen to be somewhat conflicting.

6.2. Solution Flow and Stability
An increase in the rate of flow of solution past a crystal surface has two
main effects. It will even out the distribution of solute over the surface
and will reduce the thickness of the boundary layer. The first effect, as
argued in the previous section, will lead to enhanced stability for a poly-
hedral crystal, but the beneficial effect of the reduced boundary-layer
thickness is not so obvious and will be discussed first.

According to the concept of a metastable region of supersaturation
gradient, stirring may lead to an enhancement of stability even of an
infinite plane surface. The distribution of solute and the temperature
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F1G. 6.9. (a) Solute concentration ahead of crystal growing in stirred solution
(b) Metastable region of supersaturation gradient in stirred solution (compare
Figs 6.3(a) and (b)) (Scheel and Elwell, 1973a).

relationships ahead of the interface are shown in Figs 6.9(a) and (b), which
may be compared with the corresponding diagrams for an unstirred
solution shown in Figs 6.3(a) and (b). The interface concentration n, will
exceed the equilibrium value as interface-kinetic control becomes dominant
and the solute gradient will depend, to a good approximation, on (n,, — n,)/8.
T'hus, although & decreases with stirring, there is a corresponding decrease
in the width of 87 of the thermal boundary layer. So if the temperatures of
the crystal surface and the bulk solution remain constant, stabilization
results since the temperarute gradient is steepened by stirring to a greater
extent than the solute gradient. This additional stabilization is a 1esult of
the enhanced degree of interface control, which determines the growth rate
© (see Eqn. 0.3).

Tiller (1968) reached the opposite conclusion, namely that stirring leads

12
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to reduced stability in the case of an infinite plane surface. This conclusion
will apply to cases where the temperature control is such that the increase
in solute gradient is not compensated by an increased temperature gradient.,
Hurle (1961) examined the conditions for stable growth in the case of a
rotating crystal and concluded that the supersaturation gradient is in-
dependent of the crystal rotation rate.

The theory of interface stability during growth from stirred melts was
also considered by Delves (1968) and by Hurle (1969), who used a per-
turbation analysis. Delves concluded that the interface may be stabilized
by fast stirring if the liquid is slightly supercooled. Under conditions near
to instability, a self-excited oscillatory motion of the interface was predicted,
with a wavelength of 30 um in the example quoted. This result is very
similar to that of Shewmon which was discussed in Section 6.1.2. Hurle
also concluded that the effect of stirring on the stability of a plane interface
is small, and found that there is no condition of absolute stability in a
stirred solution.

When crystals of finite size are considered, the important condition is
that growth should be uniform over the whole surface. As discussed in the
previous section, instability will result if the supersaturation falls to zero
at the centre of a face, and the probability that this will occur 1s clearly
much reduced in a flowing solution. The problem of the maximum size of
a crystal face for stable growth has been considered by Carlson (1958)
who assumed a region of laminar flow between the surface and the bulk
solution. For the crystal to grow at a uniform rate, the concentration was
assumed to vary with the distance v from the leading edge according to

n=n,, —by'? (6.23)

in

where b is independent of # or v. The maximum length / of the face for
stable growth is then determined by the condition that the surface con-
centration should not fall below the equilibrium value, This gives for the
limiting value

—=0.214 Du/Sc! Yep/(n,, - n,)]? (6.24)

where Sc is the Schmidt number y/p,, D, u the solution flow rate and ¢ the
linear growth rate. With this equation, and assuming similar values for
D, =, n_, - n,, etc., to those in the previous examples, values of / some two
orders of magnitude higher than those given by the theory of Chernov
[Eqn (6.19)] or Cahn [Eqn (6.20)] are predicted. Equation (6.24) therefore
appears to provide a stability criterion which may be used as a basis for
practical procedures for crystal growth under stable conditions, as will be
discussed further in Section 6.6.
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6.3. Ultimate Limit of Stable Growth

A prediction of the constitutional-supercooling or supersaturation-gradient
approach is that the maximum stable growth rate mayv be increased as the
temperature gradient at the interface is increased. However, experimental
evidence indicates that there exists for any material an ultimate rate of
stable growth which cannot be exceeded even with a steep temperature
gradient and a high degree of stirring.

Data for the stable growth rates from a number of typical H'T'S and
LPE growth experiments have been listed in Table 6.1 and in no case was
this rate found to exceed significantly 55 10 % em s !, or about 4 mm per
day. It is probable that a limiting growth rate of this order is imposed by
surface-kinetic processes such as desolvation, integration at kinks and
removal of solvent molecules from the surface. In several cases spontancous
nucleation of further crystals might limit the maximum feasible growth rate.

However, faster growth rates are possible in crvstal growth from the
melt and it is clear that the transition from a dilute solution to a pure melt
is gradual. T'his implies that higher stable growth rates may be achieved
in solution growth if the solute concentration is relatively high. This
conclusion is confirmed by the work of Belruss et al. (1971), who reported
stable growth rates of 10 *ems ! in top seeding experiments using a
70-90°,, solute concentration. At high values of the growth rate, the re-
moval of the heat of crystallization cannot be neglected as a rate deter-
mining factor.

Wilcox (1970) has discussed the influence of a temperature gradient
on crystal facetting. In high temperature gradients, crystals tend to grow
without facets and it is possible that, in certain systems, even higher
growth rates than thosce of Belruss et al. (1971) could be achieved with
non-facetted erystals.

If crystals are to remain facetted, the only possibility of faster stable
growth than by the usual layer mechanism would appear to be by en-
couraging a high activity of hillock sources on highly dislocated faces.
Iigure 6.10 shows the large activity of growth hillocks on an yttrium iron
garnet crystal compared with the layer mechanism. The photograph shows
a surface which normally grows by spreading of layers from relatively few
centres. The surface has two raised circular areas due to solution droplets
which have remained after removal of the bulk of the solution by hot
pouring. During cooling to room temperature, rapid growth continued on
these areas and the remaining flux was subsequently removed by dis-
solution. One droplet shows continued layer growth with a raised rim due

+ T'his conclusion is confirmed by results reported by Mrs. V. AL Timofeeva at
1CCG 4, Tokyo, 1974,
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Crystal Solvent Linear growth Remarks Reference
rate A s !
Ba,Zn,Fe,,0.., BaO- B.O, 200 Pulling from solution AuCoin et al. (1966)
‘GdAlO, PbO- PbF., B.O, ~ 200 Accelerated crucible Scheel (1972)
rotation technique
NiFe, 0, NaFeO. 200 Pulling from solution Kunnmann et al. (1963)
NiFe,O, BaQ- B.O, ~ 500 Pulling from solution Smith and Elwell (1968)
NiFe,0, PbO- - PbF, ~ 260 Seeded growth from solution  Kvapil et al. (1969)
YiFe,0,. BaO- B,0, 120 Seed crystal on stirrer Laudise et al. (1962)
Y,Fe, O, BaO- B.O, 150 Pulling from solution Linares (1964)
Y.Fe,O,. BaO) R.O, ~150 Pulling from solution Kestigian (1967)
Growth by liquid phase epitaxy
Al,Ga, ,As Ga 22 LPE, slow cooling Blum and Shih (1971)
GaAs Ga ~ 140 LPE, fast cooling Kang and Greene (1967)
GaAs Ga ~170 LLPE, slow cooling Kinoshita et al. (1968)
Ga, Al As Ga ~10 LPE, slow cooling Woodall (1972)
InAs, ,Sb In 250 LPE, gradient transport Stringfellow and Greene (1971)
InAs, ,Sb In 170 LPE, gradient transport Stringfellow and Greene (1971)
Eu,Er,Fe, .Ga, 0. PhO) B.O, 660) [.PE, 30" supercooling Levinstein et al. (1971)
Bi.O, V.0,
Eu, Y. Fe,,Ga, ,0,, PbO- B.O, 340 LPE, slow cooling Giess et al. (1972)
Y,Fe,0,. Ba(O)- B.O, 260 LLPE, gradient transport Linares et al. (1965)
Y. Fe,0,. Ba()—B.0O, 8 LLPE, slow cooling Brochier et al. (1972)
RFeQ, PhO B.O, 11 L.PE, slow cooling Shick and Nielsen (1971)
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F1G. 6.10. Surface of a garnet crystal showing growth layers and two solidified
solution droplets from which the solvent was dissolved. The large droplet shows
continued laver growth during cooling, the smaller one the “nucleation’ of growth
hillocks (Scheel and Elwell, 1973h).

to faster cooling and crystallization in that region. On the other droplet
many hillocks have been nucleated and the resulting region appears to be
inclusion-free in spite of the rapid growth. An increase in growth rate of
bulk crystals by this mechanism would clearly be at the expense of crystal
quality, as measured by the dislocation density and impurity incorporation.

A method of achieving fast growth rates which has been little explored
is the use of a very thin zone of solvent over the whole crystal surface,
with solute supplied from the vapour phase. The advantage of a very thin
zone is that supersaturation gradients would be avoided, and the use of an
“ultra-thin” alloy zone for the growth of silicon has been proposed by
Hurle et al. (1964, 1967) and by Filby and Nielsen (1966).

In view of the severe limitation imposed by the normally slow growth
rates used in solution growth, any method which could permit an increase
in the maximum stable growth rate by a substantial factor is worthy of
investigation. 'The most significant contribution to fast stable growth rates
is given, assuming an optimum choice of solvent and growth technique,
by an adequate temperature gradient and sufficient solution flow rates at
the growing crystal faces,



258 CRYSTAL GROWTH FROM HIGH-TEMPERATURE SOLUTIONS

6.4. Experiments on Growth Stability

Several experiments have been performed, particularly with aqueous
solutions, with the aim of determining the conditions for stable growth
and in order to observe the effects of instability.

The existence of a maximum rate of stable growth and its dependence
on crystal size was demonstrated as long ago as 1939 by Yamamoto.
He measured the critical growth rate of alkali halide crystals of various
sizes growing in aqueous solution. The incidence of inclusions at the
higher growth rates was found by microscopic observation to depend
upon the spreading of layers across the crystal face. Under stable con-
ditions, only one layer could be seen to be advancing across a given face
at any time. Unstable conditions leading to inclusion formation could be
correlated with the formation of successive layers before a previous layer
had reached the edge of the crystal. Yamamoto’s observations led him to
propose that the maximum rate of stable growth decreases in proportion
to the area of the crystal face.

The decrease in the maximum stable growth rate with crystal size was
also stressed by Egli and Zerfoss (1949) and by Egli (1958), although
quantitative data were not given.

Detailed studies were made by Denbigh and White (1966) of the growth
stability of hexamethylenetetramine. They found no inclusions in the
central 65 um of crystals and concluded that this represents a critical size
below which inclusions are not formed, irrespective of the growth con-
ditions. The incidence of inclusions in larger crystals confirmed the
validity of a critical growth rate, which has a value of about 2 x 103 em s !
for this material. The critical growth rate was substantially independent of
the stirring rate for the small crystals grown (~10 2 ¢m), but inclusions
were not observed when the stirring rate was very high. In the batch
system used, however, the main effect of stirring was to increase the
nucleation rate and hence to reduce the crystal size. A quantitative investi-
gation was also made by Alexandru (1972) of the stability of Rochelle salt.
The crystals used in this case were large, up to 600 g in weight, in contrast
to the relatively small crystals studied by Yamamoto (1939) and Denbigh
and White (1966). The measurements were made under conditions of
fairly rapid solution flow. Alexandru found that the maximum stable
growth rate varies in inverse proportion to the length of the crystal face.
As with Yamamoto’s observations, stability was believed to be correlated
with the rate of movement of layers across the crystals and was influenced
by the presence of impurities in the solution. The stability condition
could also be expressed in terms of a maximum supersaturation opay,
which was related to the face length by an expression of the form
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h o
Tmax — 0 . (6.25a)
A

When a sced eryvstal of length x, was used, a modified relation

Omax —d = b ((12.;1'))
X—w,
was found to fit the data. It is perhaps surprising that the maximum
supersaturation for a given crystal size should depend on the previous
history of the crystal, and these observations indicate the importance of
the distribution of dislocations in the crystal.

Relatively few measurements have been made of maximum stable growth
rates in high-temperature solution but Wentorf (1971) reached the same
conclusion for the growth of diamond as did Alexandru for Rochelle salt,
namely that the stable growth rate should decrease inversely as the
diameter of the crystal. For a 1 mm erystal, the maximum growth rate was
found to be about .2 mm hr !, decreasing to 0.04 mm hr ' when the
crystal reached 1ts maximum size of 5 mm.

Bruton (1971) studied the stability of growth of lead tantalate, Pb'la,0,,
by top seeding from a Pb,V,0; flux under conditions which were believed
to be turbulent. According to Carlson’s criterion [Eqn(6.24)] the maximum
size of crystal for stable growth was calculated to be 1.2 em. In practice
inclusion-free crystals rarely grew larger than 4 x 2 x 1 mm, and larger
crystals usually contained many inclusions.

Dawson et al. (1974) measured the growth rate and inclusion concen-
tration of NaNbQO, grown on a rotating seed in NaBQ, as a function of the
temperature difference across the melt. The results are shown in Fig. 6.11.
‘I'he growth rate varies approximately as 47 and extrapolates to rather a
large value at 47 =0 because of solvent evaporation. Also shown in Fig.
6.11(a) is the line which is believed to denote the boundary between stable
and unstable growth. The justification for this particular choice of stability
condition is that the variation with 4T of the inclusion concentration is
very similar to a plot of the difference between the actual growth rate and
the value given by this boundary line, as may be seen from Fig. 6.11(b).

The stability condition represented by the boundary in Fig. 6.11(a) is
in good agreement with the supersaturation-gradient concept, if it is
assumed that the temperature gradient at the crystal surface varies directly
as AT. From Eqn (6.6), (¢/4T) - (Dén,/pRT?43) for instability, where
Az 1s the length over which the temperature drop occurs. If 4z is taken to
be the depth of the melt (2.3 em) with D=4x10*cm®*s ', ¢=59K]
mole !, p=444gem ?, n,=1.77gem 3, T=1378 K (all measured ex-
perimental values), the value predicted for /47 is 12x10 *ems 'K 1
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Fic. 6.11. (a) Growth rate of NaNbQO; on a rotating seed in NaBO, solution,
with estimated limit of stable growth. (b) Solvent inclusions concentration and
excess growth rate above estimated limit for NaNbQ, (Dawson et al., 1974).
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T'his is much lower than the experimental value of 5.3 <10 7em s ' KL
However, if the temperature is assumed, due to stirring in the bulk solution,
to be dropped over a thermal boundary layer of width 8(Sc/Pr)! 2, where
Scis the Schmidt number and Pr the Prandtl number, a value in the region
of 510 Tem s ' K- for /47 1s predicted by the supersaturation-gradient
model. Unfortunately a direct measurement of the temperature gradient
at the interface was not possible, but these results strongly support the
validity of the supersaturation-gradient approach.

6.5. Results of Unstable Growth

Since stable growth has been defined in the present context as growth
without solvent inclusions, it is clear that instability will result in inclusions,
What is interesting 1s to consider the extent to which the quantative and
qualitative models discussed above can account for the observed features
which result from the onset of instability,

T'he development of a periodic disturbance has already been discussed
in Section 6.1.2 and examples of theoretical treatments which predict this
periodicity have been mentioned. Another observation of a crystal with
periodic inclusions is illustrated in Fig. 6.12, which shows a section parallel
to the growth direction of a NaNbO, crystal grown by top sceding (Dawson
et al., 1974). As in Fig. 6.6, the instability has occurred at the termination

]
” Ll
- e a4

Fi1i. 6,12, Section through NaNbO, showing periodic inclusion structure
(Dawson et al., 1974).
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of growth, possibly following removal from the solution. The period in
this case is about 80 pm.

A cellular interface similar in appearance to that observed on melt-
grown crystals under unstable conditions was reported by Hurle et al.
(1962) on crystals of InSb grown from solution in a supersaturation
gradient and recently by Schieber and Eidelberg (1973) on crystals of
BaFe,,0,4. The cells in the latter case were believed to be due to platinum
segregation.

Another example of a crystal with periodic inclusions, in this casc
DyVO, grown by slow cooling by Garton and Wanklyn (1969), is shown
in Fig. 6.13. It is by no means certain that the periodicity in this case is
due to excitation of the longer face since the periodicity may well be in
the growth direction. Landau (1958) has predicted that, under constitu-
tionally supercooled conditions, the growth rate may vary periodically,
resulting in a periodic distribution of impurities. The periodicity is caused
by the lowering of the degree of constitutional supercooling by an interval
of unstable growth with inclusion formation, so that an interval of stable
growth follows during which the instability builds up to some critical value
and the cycle is re-initiated. This model could account for some of the
striations and bands of inclusions which are observed in H'T'S-grown
crystals (see Chapter 9) but has not found wide acceptance.

Particularly under diffusion-limited conditions, the higher supersatura-

FiG. 6.13. DyVO, crystal with periodic inclusions (Garton and Wanklyn, 1969).
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tion at the corners and edges of a crystal will lead to an onset of more rapid
growth in these regions as the degree of constitutional supersaturation is
increased. A\ progressive increase in the supersaturation gradient leads first
to the formation of raised edges, then to the development of terraces or
“hopper” crystals and finally to dendrite formation with projections in the
directions of rapid growth. This sequence is illustrated in Fig. 6.14 which
is taken from the paper of Fredriksson (1971), who discusses the mor-
phology of metal crystals as a function of the growth conditions.

F1i. 6.14. (a)—(d) Progressive changes in shape of an ideally cubic crystal with
increasing degree of supersaturation gradient (Fredriksson, 1971).

If growth occurs by a mechanism of layer spreading from corners and
edges, it is very probable that the inclusions will be formed at the face
centres of the crystal where the supersaturation is low. This has been
confirmed by several observations by the authors, by the work of Carlson
(1958) on aqueous solution growth and, for example, by Lefever and
Chase (1962) on yttrium iron garnet. A more detailed description of the
types of inclusion found in crystals grown from HTS will be given in
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Chapter 9. Many examples of the transition from the normal habit form to
skeletal and similar crystal shapes are quoted in the review by Chernov

(1972).

6.6. Experimental Conditions for Stable Growth

6.6.1. Optimum programming for stable growth

The essential criterion for stable growth is that the growth rate should
always lie below the maximum stable value, with a “‘safety margin” to
allow for temperature fluctuations due to imperfect regulation or to con-
vection overstability in the solution.

Scheel and Elwell (1972) and Pohl and Scheel (1975) presented a tem-
perature programme for the growth of crystals by slow cooling, with the
stable growth rate estimated according to Carlson’s criterion which was
discussed in Section 6.5. Rearrangement of Eqn (6.24) gives the maximum
stable growth rate 7,4« = d/ 2d7 for a crystal of side /as

Tmax — B?I,. ™ ! (fL?,())
with B =(0.214 Duo?® Sc' %p*)' 2, (6.27)

Here n, is the solubility at temperature 7, and o is the relative super-
saturation (n,, — n,)/n, which is assumed to remain constant throughout the
crystallization process. The crystal volume 1s

B=(n,-n)l" p, (6.28)

where n, is the initial solubility at time f = 0 and I the volume of the solution.
Combination of (6.26) and (6.27) vields after integration

n,(T)=n, cosh’[B(n,p 1) *]. (6.29)

This equation defines the temperature T as a function of the time # if the
solubility curve is known and the supersaturation is given a value below
some critical limit.

An example of a cooling programme based on Eqn (6.29) is shown as
curve IIT in Fig. 6.15(a). The parameters assumed are: solution volume
V=80 cm? p=p,,=5gcm3 n=15%, at 1600 K and 5°, at 1300 K, D =
103 em?* s}, ¢=10"2 Sc=420 and ©=10 cm s~'. It may be seen that the
deviation of the calculated programme from a constant cooling rate [II of
Fig. 6.15(a)] is relatively slight except at the early stage where the crystal is
very small. The corresponding growth rates are shown in Fig. 6.15(b)
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Fic. 60.15. (a) Temperature programmes for TS growth by slow cooling.
I constant hinear growth rate; [l constant cooling rate; 111 for maximum stable
growth rate according to Eqn (6.29). (b) Linear growth rate for programmes [—I11
(Scheel and Elwell, 1972),
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from which it is clear that the initial growth rate in case Il is much higher
than the limiting value, which explains the frequent observation of a
dendritic core in large crystals grown by spontaneous nucleation.

Curve I of Fig. 6.15(a) is based on the assumption of a constant lincar
growth rate, in which case the temperature change from the initial value
will vary as %, Several proposals for temperature programmes (Neuhaus
and Liebertz, 1962; Koldobskaya and Gavrilova, 1962; Sasaki and Matsuo,
1963; Bibr and Kvapil, 1964; Kvapil, 1966; Cobb and Wallis, 1967;
Kvapil et al., 1969; Fletcher and Small, 1972; Wood and White, 1972) have
been based on the use of a constant linear growth rate, but it is clear from
Fig. 6.15(b) that the growth rate may exceed the maximum stable value
during the later stages of growth unless the constant value is initially well
below the stable limit.

Figure 6.16 shows the effect of viscosity, solution flow rate and crucible
size on the temperature programme calculated using Eqn (6.29) with
otherwise the same parameters as in the previous example. A total duration
of 10 hours (about 6 weeks) is considered acceptable but twice this value
would probably be prohibitive. A rapid solution flow rate can be seen to be
essential if one large crystal is to be grown. Large crucibles are unlikely to
result in one crystal per run but stable growth is possible if multinucleation
is taken into account. The effect of flux viscosity is seen to be relatively

i TEMPERATURE (K)
1600 |

1300
0]

log t (hr) —=

Fia. 6.16. Temperature programmes according to Egn (6.29) for various values
of solution flow rate u, viscosity % and solution volume 17 (Scheel and Elwell,

1972).
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minor, but it is unlikely that high values of solution flow rate will be
possible in viscous solvents.

T'he slowest cooling rates must be used in the carly stage following
nucleation and a considerable saving in time without the onset of unstable
growth can be achieved by the use of seed crystals. The initial cooling rate
with a seed crystal will be chosen to correspond to the maximum stable
growth rate for the particular size of seed chosen.

T'he programme specified by Eqn (6.29) was calculated on the basis that
the growth rate should at all times have its maximum stable value. In
practice it is desirable to use a growth rate which is less than the maximum
value by a sufficient margin to allow for minor temperature fluctuations
within the solution. The best temperature regulation which can be
obtained with commercial controllers is about - (0.1°C and, in the example
considered above, a sudden drop of 0.1°C would result in the deposition
of about 13 mg of solute. If this drop were to occur in 10s on a crystal of
arca 1 em?, the resulting growth rate would be 3 x 104 em s, which is
two orders higher than the maximum stable value! In practice the super-
saturation is created throughout the melt and the effect of the temperature
drop is much less drastic, but sudden temperature drops of 2°C may occur
when cooling is effected by a motor-driven helipot or similar mechanical
means. T'his shows that excellent temperature control and programming
are necessary when large inclusion-free crystals are to be grown.

Curve I of Fig. 6.17 shows the cooling rate according to the programme
of Fig. 6.15 (curve I1II) and a less idealized practical procedure is indicated
by the dotted line 11. The actual values of the cooling rate proposed in this
example are: 0.2°C hr! for the first 48 hr, 0.5°C hr~! for the next 24 hr
and 1.2°C hr ! for the remainder of the growth period, about 220 hr.
Those values are chosen to give a reasonable safety margin, except for the
initial value which is selected on the basis that it is pointless to use a cooling
rate which is not at least comparable with the random fluctuations (Laudise,
1963). The increase in time required by the proposed procedure is about
75 hror 25¢,,.

Also shown in Fig. 6.17 as curve III is the cooling rate required by the
programme of Eqn (6.29) for the same conditions as for curve I but with
u=0.1cms~!, a value typical of stirring by natural convection. The
maximum stable value in this case is only (.175°C hr! and the total time
required by the programme is about 100 days. Since such a period would
be unacceptable to most crystal growers we propose the use of a constant
cooling rate of 0.2 or 0.3°C hr-! for experiments using unstirred melts.
Such a cooling rate will probably result in more than one crystal but should
vield only a few crystals with substantial inclusion-free regions.

Temperature programming for the growth of crystals in industrial
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crystallizers has been discussed by Mullin and Nyvlt (1971), and Wood
and White (1968) advocated the use of programming in crystal growth by
flux evaporation in order to achieve a constant linear growth rate. How-
ever, the linear growth rate has to decrease according to Scheel and Elwell
(1972), and the flux evaporation rate should be programmed according to
the maximum stable growth rate. In certain cases a constant linear growth
rate might be necessary, for instance for homogeneous doping. Constant
growth conditions necessitate, according to the Burton-Prim-Slichter
equation for the effective distribution coefficient, a nonvarying boundary-
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Fic. 6.17. Cooling rates for stable growth. I as for programme IIl of Fig.
6.16(a); 11 suggested practical procedure; 111 for an unstirred solution (Scheel and
Elwell, 1972).

layer thickness and therefore a nonvarying area of the growing crystal face.
These conditions are only fulfilled in liquid phase epitaxy and in such
cases where the application of large seed plates is possible and crystal
growth occurs mainly in the direction normal to the seed plate by proper
choice of the seed orientation. In any case a value of a constant linear growth
rate has to be chosen which is equal to or lower than the maximum stable
growth rate for the final crystal size. From this discussion it follows that it
is difficult to obtain the quasi-steady-state conditions necessary for the
growth of large crystals of homogeneous dopant concentration or of
homogeneous solid solutions, and the experimental conditions required
are discussed in the next chapter.
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6.6.2. Stirring in flux growth
The desirability of stirring for the achievement of stable growth at rela-
tively rapid rates has been mentioned in the discussion of the examples in
Section 6.4, and stirring techniques are discussed in the next chapter.
In the great majority of experiments, some stirring action is achieved by
natural convection. The role of natural convection in crystal growth has
been reviewed by Cobb and Wallis (1967), Parker (1970), Wilcox (1971),
and Schulz-Dubois (1972).

The onset of convection is normally specified (Chandrasekhar, 1961)
by the value of the dimensionless Rayleigh number

Lt (6.30a)

hl’
where x 1s the volume expansion coefficient, L the depth, A the thermal
diffusivity and » the kinematic viscosity of the liquid, with 47" the tempera-
ture difference across it. Some critical value of R, depending on an idealized
geometry, must be exceeded for convection while higher values of R may
lcad to temperature oscillations, or to turbulence at even higher values.
However, in real crystal-growth systems some convection will occur below
the critical R values due to some inevitable asymmetric or reverse tem-
perature gradients due to buoyancy.

In solutions it is also necessary to consider thermosolutal convection
due to density differences between the solute and solvent. The onset of
solutal convection may be specified by defining a solutal Rayleigh number
R.as
_gBLAn

— (6.30b)

R,
where B is the rate of change of density with concentration, 4n the solute
concentration difference across the liquid and K, the diffusivity of the
solute. Since K is normally lower than the thermal diffusivity K by some
orders of magnitude, convection is highly probable in solutions even if the
temperature gradient is in the “wrong” direction. Oscillations are par-
ticularly likely in solution due, for example, to “overstability’’ which can
occur when a destabilizing temperature gradient is opposed by a solute
gradient (Jakeman and Hurle, 1972).

Even for pure melts, it is difficult to obtain a reliable expression for the
rate of convective flow of the liquid. Cobb and Wallis (1967) derived a
simple expression for the flow rate of a liquid, unbounded in the horizontal
direction, between horizontal plates differing in temperature by 47. The
average flow rate 1 was estimated as



270 CRYSTAL GROWTH FROM HIGH-TEMPERATURE SOLUTIONS

U=
Ps nI e CP

[0.208(R)V4 — 1] (6.31)

where €. is the specific heat of the liquid and R the Rayleigh number.
Figure 6.18(a) shows the value of u as a function of the liquid depth L for
various values of the convection parameter a=R/L? and for a fixed value
of AT=10°C. Except for very low values of L, where u increases very
rapidly, the solution flow rate is seen to remain between roughly 0.01 and
0.04 ecm s-'. Figure 6.18(b) shows the convection flow rate versus tem-
perature difference 4T for a typical value of a=1500. The latter is limited
in a crystal-growth experiment because of nucleation at high values of 47,
and therefore this possibility of increasing u is also limited. Maximum
rates of thermal convection flow in high-temperature ionic solutions will
be of the order of (.1 cm s~! and in metallic solutions one order of magni-
tude faster.

From the examples illustrated in Fig. 6.16, it is clear that such values
of the flow rate are too low for stable growth of a few large crystals per
crucible, and so forced convection by stirring is desirable where possible.
Stirring may be achieved by rotating a seed crystal as in the fop-seeded
solution-growth ('TSSG) technique and the resulting flow patterns have
been studied by Robertson (1966) and Carruthers and Nassau (1968) using
an aqueous analogue. Stirring may be enhanced by occasional reversal of
the seed rotation (Miller, 1958; Senhouse et al., 1966) or of the crucible
rotation direction (Nassau, 1964; Bonner ef al., 1965; Schroeder and
Linares, 1966). This TSSG technique is restricted to solvents of low
volatility and is therefore not applicable to PbO/PbF, and many other
widely used solvents.

The problem of stirring a corrosive liquid at high temperatures is by no
means simple. Serious problems are associated with sealing the crucible
and stirring the solution in a sealed crucible at high temperatures or with
the corrosive solvent vapours. The only really effective method proposed
to date is the accelerated crucible rotation technigue (Scheel and Schulz-
DuBois, 1971; Scheel, 1972) in which the rate (and frequently also the
sense) of crucible rotation is varied continuously (but not abruptly as in
the crucible reversal mentioned above) and the inertia of the liquid used to
promote mixing. Experience from aqueous solution growth indicates that
flow rates of 10-50 cm s~! are desirable and the practical realization of such
conditions will be discussed in the next chapter.

An alternative approach to the problem of non-uniform solute flow has
been proposed by Tiller (1968) and is illustrated in Fig. 6.19. He suggested
the use of a convection-free cell with a seed crystal located inside a platinum
tube inserted into a well-mixed solution. Convection is prevented by
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Fi1c. 6.18 (a) Solution flow rate by natural convection for various convection
parameters a (— R/L*) and temperature difference of 10 C versus liquid layer
height L. (b) Solution How rate by natural convection versus temperature difference
AT for various liquid layer heights and a constant convection parameter a 1500,

(Scheel and Elwell, 1973a.)
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Fii:. 6.19. Convection-free cell (1) in a stirred solution (11) (Tiller, 1968).

baffles across the ¢nd of the tube and a uniform flow of solute to the sced
by diffusion may be realized. This method does not yet appear to have
been tested in practice on Earth but could give stable growth if technical
problems and problems associated with heat conduction through the
platinum tube (and nucleation on the tube) could be solved. The growth
rate would, however, be appreciably lower than in a stirred solution.
Interesting results on convection-free growth may be expected from the
Skylab experiments where convection does not occur due to the near zero
gravity in space.

6.6.3. Temperature control and distribution

The importance has been stressed of using the best possible controller to
regulate the temperature of the furnace. Commercial controllers using
saturable core reactors or thyristors can give regulation to =0.1°C and
their ready availability has greatly contributed to a continuing improve-
ment in crystal size and quality. However a high degree of control is
pointless if temperature oscillations due to convection overstability are
present in an unstirred solution. Smith and Elwell (1968) measured
oscillations of amplitude 0.5°C in a solution of NiFe,0, in BaO.0.62B,0,
at 1200°C with a melt depth of about 3 em. The amplitude of these oscilla-
tions was reduced to some extent by rotating the crucible (sce Section
9.2.4).

By effective stirring such temperature oscillations could be prevented
so that exact temperature regulation becomes meaningful. It is technically
difficult to measure small temperature fluctuations in stirred high-tem-
perature solutions but estimates of Schulz-DuBois (1972) and Scheel (1972)
indicate a high degree of temperature homogenization, for instance by the
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accelerated crucible rotation technique, and this applies also to other
stirring techniques which dominate the hydrodynamics in the high-
temperature solutions.

From the discussion of the supersaturation-gradient criterion it is
cvident that the temperature gradient at the crystal surface 1s of major
importance in determining the crystal quality. In theory a very large tem-
perature gradient is desirable so that stable growth will be possible at high
growth rates but in practice a compromise is always used because of an
adverse effect on the crystal quality. A large gradient will result in a high
degree of strain and so more dislocations will be produced in the crystal.
In top-sceded growth where the temperature gradient at the crystal can be
varied by changing the depth of the crystallizing interface below the
liquid level and by altering the degree of coolant flow through the seed
holder, a high cooling rate is often found to result in nucleation at the edges
of the crystal and it is important to ensure that the radial temperature
gradient across the surface of the solution is not too great.

Similar considerations apply to growth by spontaneous nucleation where
localized cooling 1s used. Measurements of the optimum temperature
distribution for the growth of garnet crystals at the base of a crucible have
been reported by Tolksdorf and Welz (1972).

6.6.4. Mechanical disturbances
T'he concept of a metastable region of supersaturation gradient suggests
that instability will be favoured if the growing crystal is subjected to
mechanical shock, which will tend to nucleate any instability. This view
is supported by the experience of the authors with both growth by spon-
tancous nucleation and by top seeding. In the former case the size of
inclusion-free regions was found to be increased by a factor greater than
two when the furnaces were mounted on antivibration supports inside
closed metal cabinets. In top-seeded growth, a gradual deterioration in
crystal quality and an increase in the nucleation of secondary crystals on the
cdge of a seed have been noted as the sced rotation mechanism became
worn.

The practical aspects mentioned above will be discussed more fully in
the next chapter.

6.7. Summary
I'heoretical treatments of the growth of spherical and cylindrical crystals
indicate that these will be stable only up to a critical radius, which will be
increased by interface kineties and surface diffusion.

In the case of a plane crystal surface growing in solution, unstable
growth may result if there exists a supersaturation gradient ahead of the
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interface. A solute gradient associated with the volume-diffusion process
will inevitably be present and a supersaturation gradient may be avoided
only by the application of a sufficiently large temperature gradient. The
experimental observation of inclusion-free growth in very small or negative
temperature gradients may be explained by the assumption of a metastable
region of supersaturation gradient. Stabilization is believed to result
primarily from the kinetic mechanisms on the low-energy habit faces
normally exhibited by solution-grown crystals.

An important factor when polyhedral crystals are considered is the
difference in supersaturation between the edges and centre of any face.
This supersaturation inhomogeneity may be offset by a higher kinetic
coefficient at the face centres due to curvature of the vicinal face or to a
higher concentration of active growth centres. Stirring the solution is
desirable in order to minimize the supersaturation inhomogeneity. Even
in well-stirred solutions with a large stabilizing temperature gradient, it is
likely that there will exist for any material an ultimate rate of stable growth.

For the experimental attainment of stable growth, precise temperature
regulation is required and mechanical shocks should be prevented. T'he
maximum growth rate may be increased by the application of a sufficiently
large temperature gradient and by stirring the solution.

A considerable body of evidence has been presented to demonstrate that
the maximum stable growth rate decreases with increase in crystal size.
Temperature programmes for crystal growth by slow cooling have been
presented which are based on the requirement that the growth rate should
never exceed its maximum stable value.
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APPENDIX B

lowed by several others but serve to illustrate a need for intensive development so
that this important technology of LPE can achieve its true potential. This requires
the education of crystal/epitaxy technologists (Scheel 2003&2004).
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