
Online-Edition of the original book
with additional Chapter 11 and Appendices A and B

Part 009

Please get the complete edition from
http://e-collection.library.ethz.ch/view/eth:4822

2011 © D. Elwell & H. J. Scheel



6. Conditions for Stable Growth 

6.1. Stability of Growth . 
6.2. Solution Flow and Stability 
6 .3 . Ultimate Limit of Stable Growth 
6.4. Experiments on Growth Stability 
6.5. Results of Unstable Growth 
6.6. Experimental Conditions for Stable Growth 
ü.7. Summary. 

Refercnces 

6.1. Stability of Growth 

237 
252 
255 
258 
2ül 
264 
273 
274 

The aim of most crystal-growth experiments is to produce crystals which 
are sufficiently !arge and perfcct for some measurement or application. 
The crystal growcr is thereforc particularly concerned to establish, either 
by trial and error or by the application of theoretical principles, the condi­
tions under which such !arge and relatively perfect crystals may be produced. 

Stahle growth of a crystal from solution may be defi.ned as growth 
without the entrapment at any stage of soh·ent inclusions. Alternative 
defi.nitions of stability are possible and growth-rate Auctuations will always 
occur on some scale. Large Auctuations may facilitate inclusion formation 
or compositional variations and are likely to have an adverse effect on the 
crystal quality. 

The problern which is normally considered in a theoretical approach to 
the calculation of conditions for stable growth is that of morphological 
stability, or whether a specifi.ed shape is stable against small perturbations. 
This problem differs from the rclated question of whether a given shape 
or habit is preserved as the crystal grows. Both aspects are of importance 
and ,,·ill be discussed in this chapter. Re,·iews on morphological stability 
have recently been published by Parker (1970) and by Chernov (1972). 

Perturbation analyses and related studies are concerned with simple 
shapes but have given a number of results which are of great relevance in 
the design of experiments. The most important conclusions are that the 
stability tends to decrease as the crystal increases in size, and the concept 
of constitutional supercooling. Both these results of stability theory have 
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238 CRYSTAL GROWTH FROM HIGH-TEMPERATURE SOLUTIONS 

heen appreeiated for some years hut their relation to experiments on high­
temperature solution has reeeived eomparatively little attention and will 
he stressed where possihle. 

Partieular importanee is attaehed in this ehapter to the eoneept of a 
maximum stahle growth rate and its dependenee on the growth eonditions. 
Praetieal eonsiderations for the attainment of stahle growth will be dis­
eussed in the later seetions of the ehapter. 

6.1.1. Stability of the sphere and cylinder 
Mullins and Sekerka (1963) used the perturbation method to examinc the 
stability of a spherieal erystal with isotropie surfaee kineties growing in a 
supersaturated medium. They eoncluded that the sphere is stable against 
perturbations only if its radius is less than a value of 7r"', where r"' is the 
radius of the eritieal nucleus. Forasupersaturation of 10% , the maximum 
stable radius was ealculated to be of the order of 0.1 f-LID. Niehots and 
Mullins ( 1965) and Coriell and Parker ( 1966) studied the effeet of surfaec 
diffusion on the stability of a spherieal erystal and found that the maximum 
stable radius is increascd by a largc factor. In thc cxamplc considcred by 
N iehotsand Mullins, this factor was of the order of 100 so that sphercs 
werc cstimated tobe stable to a radius of about I0- 3 em. 

Cahn ( 1967) included the effect of interface kinetics and of an anisotropie 
surfacc tension. He found that thc latter has no stabilizing cffect but this 
result is not surprising for a sphere since thc anisotropy is not shapc pre­
sen•ing as it would be for a polyhedral erystal, and its main effeet will bc 
to eause an anisotropy in the instability. The inclusion of interfaee kinetics 
Ieads to an expression for the rate of inerease of radius of the sphcre given 
by 

dR F(n" ' - n,) 
dt 1 + FpR fD 

(6.1) 

where Fis a kinetic eocfficicnt suchthat thc linear growth rate.,. = F(n, - 11,) 
and the other symbols ha\·e bccn defincd preYiously. 

For small erystals the term FpR fD may be neglectcd and the growth 
rate beeomes F(ns,.- n,). Sinee the diffusion eoefficient D does not appear 
in the expression for dRfdt, growth is said to be interfaee eontrolled. The 
interfaee eoneentration in this ease is approximately the samc as in the bulk 
solution and growth should bc stable sinee the coneentration gradient in 
the solution is approximately zero. At high values of R thc increase of 
radius is given by 

dR D 
dt = pR (n s,.- n,) 

and the sphere beeomes unstable as shown by Mullins and Sekerka (1963). 



0. CONDITIONS FüR STAHLE GROWTII 239 

This treatment thereforc Ieads to the conclusion that the sphere will be 
stable only up to a radius such that f..:pRfD-- I. For D = 10- 5 cm 2 s - 1, 

p= 5 g cm a and F = 10- 4 cm - ~ s - 1 g- 1, thc maximum stablc radius is only 
of the order of 0.02 cm. Coriell and Parker (1967) performed a similar but 
more quantitative calculation for both linear and quadratic interface kine­
tics. In the cxample they quoted, of salol growing from aqueous solution, 
kinetic control increases the maximum size for stable growth by a factor 
3000, to a value of 0.5 cm. 

The stability of a cylindrical crystal has been studied by Coriell and 
Parker (1966) and is found to exhibit appro:ximately the same behaviour as 
that predicted for the sphere. Surface diffusion was estimated to increase 
the ma:ximum stable radius by a factor of about 40. Kotler and Tiller (1966) 
included interface kinetics and found that the maximum radius is strongly 
dependent on the undercooling and the kinetic coefficient. 

The main conclusion to be drawn from these studies is that instability 
tends to occur when the crystal reaches a critical size, which will be 
increased by surface diffusion of solute and by interface kinetics. These 
predictions must, however, be treated with great caution in thcir applica­
tion to solution growth because of the strong tendency of crystals to 
develop habit faces . As a result of this tendency, it has not been founcl 
possible to study the stability of spherical or cylindrical crystals in solution, 
as for ice crystals in water (Harcly ancl Coriell, 1968). Greater significance 
must therefore be attachecl to studies of polyheclral crystals ancl of a 
single plane interface, which is treatecl in greater detail in the following 
section. 

6.1.2. Stability of a plane interface 
A. Constitutional supercooling jsupersaturation gradient. Perturbation treat­
ments of the stability of a planar crystal surface growing in a cloped melt 
wcre first given by Mullins and Sekerka (1964 ), Sekerka ( 1965) and 
Voronkov ( 1965). When concluction of heat through the crystal is inclucled, 
the condition for stability may be \\Titten as 

mn(1 - k)~· Kr (dT) K 1 (dT) 
- kD ~ < Kl' + K

1 
dz ,+Kr+ K

1 
dz-

1 
. • 

(6.2) 

Here m is the slope of the liquidus curve, n the concentration of the 
impurity in the bulk liquid, K the thermal conductivity and d T jdz the 
temperature gradient normal to the interface, with the suffices c and I 
referring to the crystal and liquid, respectively. k is the partition coefficient 
which is defined as the ratio nr fn1 of the impurity concentration in the 
crystal tothat in the liquid, and which is normally less than unity. Equation 
(6.2) could be extended to growth from very concentrated solutions where 
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1! 0 and 11 1 would be the ~olvent conccntrations in thr crystal and solution, 
respectivcly. 

The condition expresscJ by Eqn (6.2) is closely relateJ to the constitu­
tional supercooling criterion, introduced by I vantsov (1951, 1952) as 
"diffusional undercooling", by Rutter and Chalmers ( 1953) and quanti­
tatively by Tiller et al. ( 1953). As the crystal grows, impurities are rejected 
at the crystal surface and so the impurity concentration in the liquid 
immediately ahead of the interface becomes appreciably higher than that 
in the bulk of the liquid (Fig. 6.1a). This accumulation of impurities 
results in a depression of the equilibrium liquidus temperature 11. 
(according to the phase diagram) as illustrated in Fig. 6.1(b). The actual 
temperature distribution in the melt is as shown in the dashed line (i) of 
Fig. 6.1(b) and any protuberance on the interface will tend to grow 
(relative to the interface) smce it will experience a higher supercooling. 
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F1c. 6.1. (a) Impurity distribution and (b) equilibrium liquidus temperature 
TL ahead of an advancing interface in a doped melt. 
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The region ahead of the interface is then unstable. Stable growth can 
occur if the temperature gradient at the interface is increased as in (ii) of 
Fig. 6.1 (b ), in which case the actual temperature ahead of the interface is 
higher than the liquidus. 

The condition for constitutional supercooling may be readily deriYed as 

mn( I - k)<· d T 
!?D dz 

(6.3) 

\\ hich is identical with Eqn (6.2) if 1\, = 0, or if /\.·,. = 1\ 1• and the latent hcat 
is zero. Lucid reYie\\S of constitutional supercooling and of the modes of 
unstablc gro\\·th "·hich can result have been giYen by Tiller (1963, 1970). 
Experimental confirmation of the validity of the constitutional super­
cooling criterion for melt growth has been proYided by V/alton et al. ( 1955) 
and Bardslcy et al. ( 1961 ). 

The similarity between growth from a doped melt and gro\\"th from 
solution has been pointed out by \•Vhite (1965). In thc latter case solvent is 
rejected by the growing crystal and there will inevitably be a gradient of 
solute aheacl of the interface due to local depletiun by the crystal. Tilkr 
( 1968) has proposed the application of the constitutional supercooling 
criterion to growth from solution by a modification of Eqn (6.3). Since the 
solution normally contains a number (j) of solute constituents, the con­
dition for instability may be expressed by writing for the growth rate: 

'i." > Du d ~·~ I {!'!)k 1*- 1 )11 1} 
tL 1 ~ 1 D,jDu 

(6.4) 

11·here Du is the diffusion coefficicnt of the solvent ancl m1, k,*, 11 1 and D1 

refer to the solute constituent i. The effective partition coefficient is 
defined by 

11·here nc' and 11.: 11 are the concentration of i in the crystal and solution, 
respectively. Tiller has calculated the ratio of the maximum stable growth 
rate 'l.'max to the gradient ( d Tjdz) as a function of temperature for various 
compound semiconductors and his results are shown in Fig. 6.2 . 

. \n alternati1·e and much simpler calculation of the criterion for stable 
growth in solution under diffusion-limited conditions may be obtained by 
considering the condition for the appearance of a supersaturation gradient 
- an increase in Supersaturation ahead of the interface which may be a 
umsequencc of solutc ditfusion (Eh,·dl and :\eatc, I Y71; Scheel and 
Elwell, 1lJ73a). Thc condition for instability is that a protuberance will 
encounter a higher supersaturation as it advances so that at the interface, 
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F1c. 6.2. Ratio of maximum stable growth rate to temperaturc gradient fur 
solution growth of some compound semiconductors (Tiller, 1968). 

dn ___ dn , 

Clz ---- dz · 

N ow dn jdz is related to the linear growth rate.._. by Eqn (4.13) 

V'::::'.!!_ (dn) 
p dz Z = O 

anJ, for an ideal solution with nc = const exp ( - c/J /RT), 

eine cP1lc d T 
dz RPdz- · 

Substitution into Eqn (6.5) gives the condition for instability as 

Dc/Jn . d T 
v > pRT2dz 

(6.5) 

(6.6) 

which is substantially the same result as Eqn (6.4) for a single component. 
Using typical values of D = 10- 5 cm2 s- 1, n.= 1 g cm - 3, p=S g cm - 3, 

c/J = 70 kJ mo!e - 1 and T = 1500°K, the maximum stable growth rate 
according to Eqn (6.6) will be z,· rn a x,._, 10-R cm s- 1 for ciTjdz = 10 deg cm - 1 

or Vmax,._, 10- 9 cm s- 1 for dTjdz= 1 deg cm - 1• The value of Vmax/(dT/dz),...._, 
10- 9 s-1 deg- 1 is typical of the values quoted by Tiller (Fig. 6.2). 
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In practice crystals are grown at stable rates of the order of 10- 6 cm s-1 

in temperature gradients of the order of 1 deg cm - 1
• It is therefore clear 

that crystal growth from high-temperature solution normally occurs in a de­
stabilizing supersaturation gradient. 

For stable growth to occur at rates much greater than those given by 
Eqn (6.6), it must be assumed that the Supersaturationgradient must be 
i nsufficient for a perturbation to nucleate (Wagner, 1954; Tiller and Kang, 
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F1c. 6.3. (a) Salute concentration ahead of crystal growing in solution. 
(b) Metastahleregion of supersaturation gradient. (T0 corresponds to ii of Fig. 6.1 .) 
(Scheel and Elwell, 1973a.) 

1968; O'Hara et al., 1968). The crystals may therefore be said to grow 
in a metastable region of the Supersaturation ( or supercooling) gradient as 
discussed by Scheel and Elwell (1973a). This region is analogous to the 
normal metastable or Ostwald-Miers region and is illustrated in Fig. 6.3. t 
In Fig. 6.3(a) is shown the actual solute concentration n8 " in front of the 

t The width of the boundary layer is denoted approximately in the diagrams. 
The exact defin i tion of 8 is that of Eqn ( 4.14 ). 
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growing crystal for diffusion-controlled growth and thc corresponding 
liquidus temperature T,, is sho'lvn in Fig. 6.3(b). 'fhc significance of this 
metastable region between TL and 'l'cr it is that a perturbation will not 
nucleate (or will develop at a negligibly slow rate) so long as the temperature 
Terr ahead of the crystal exceeds the Iimiting value. In the example shown, 
growth will occur in the metastable region even if the temperature gradient 
at the interface is zero. If, however, the requirement of conduction of the 
heat of crystallization through the solution Ieads to a temperature distri­
bution below that of the dashed line T cr it in Fig. 6.3(b ), growth will be 
unstable and the crystal will contain an appreciable concentration of 
solvent inclusions. 

By analogy with observations on the Ostwald-Micrs region, it may be 
expected that the width of the metastable Supersaturation (supercooling) 
gradient region will dcpend on such factors as the crystal-growth rate and 
the degree of disturbance, particularly thermal or mechanical shock, to 
which the solution is subjected. 

An important question concerns the origin of the metastability ancl wc 
now consider in somc detail the relatiH· importancc of thc Y:Jrious st:Jbi­
lizing factors which were not taken into account in the clerivation of 
Eqns (6.4) or (6.6). We consider first the results of a perturbation 
approach. 

B. Perturbation analysis. In view of the importance of the perturbation 
method of stability analysis, a summary is given here of a simplified 
treatment of the stability of a plane interface growing in solution, due to 
Shewmon (1965). 

Consider a plane crystal surface growing in a supersaturated solution 
in the volume diffusion-controlled regime. Any protuberance on this 
surface may be analysecl into a number of sine waves of different wavc­
length and it is convenient to discuss the stability condition in terms of 
such sine waves. A protuberance of the interface such as that shO\m in 
Fig. 6.4 will have components of the form 

F1c. 6.4. Proturberance on plane crystal-solution interface . 
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~ E(t) sin wy (6. 7) 

\\·hcrc f is thc timc-depcndent amplitude of the perturbation and the 
\\·avelcngth is spccifi.cd by w. Thc pcrturbation causcs local changcs in thc 
solute concentration at the surface, which is given by the Gibbs-Thomson 
equation. The local curvature is assumcd to be d~z/dy~ so that the equili­
hrium concentration is specified by 

n, = n,,(l + TE(t)w~ sin wy) (6.8) 

wherc n,, is thc equilibrium concentration per unit volume for a flat 
surface, and r is the capillary constant yV.u/RT. (As in Chapter 4, Vu is 
the molar volume of the solute and y the surface energy per unit area.) 

An approximate solution may be obtained by assuming that the interface 
is static, in which case the solute distribution obeys Laplace's equation 
V2n = 0. The general solution to the latter equation for a sinusoidal inter­
face and a static solute gradient G = ( dn(dz), ~o is 

n(z , _v) = A + B exp ( - wz )E sin wy + Gz. (6. 9) 

The constants .4 :md B are chosen to make Eqn (fi.C)) idcntical with 
Eqn (6.8) at thc interface, that is by equating coefficients with z = E sin wy . 
This gives A = n". and 13 = (n,, rw~ - C), so that 

n(z, y ) = n,. + (n". Tw 2
- G) exp ( - wz )E sin wy + Gz. (6.10) 

The linear growth rate is then given by Eqn (4.13) as 

"<'~f!_ (ddn) =Q [G + (G - n,, Tw 2)wE sin wy]. 
P Z z ~o P 

( 6.11) 

Thc fi.rst term in Eqn (6.11) represents the growth rate v 0 in the absence 
of any perturbation, and so the development of any perturbation relative 
to the mean position of the surface is given by the second term as 

(6.12) 

so that 

(6.13) 

The first term on the right-hand side of Eqn (6.13) may be interpreted 
physically as being due to an increase in the concentration gradient in 
front of the "hills" on the perturbed "valleys". The second term is due to 
the concentration gradients along the surface which cause solute transport 
and so tend to smooth out the sinusoidal disturbance. The two effects 
balance at a critical value of w, denoted w 0 , suchthat 

- (Cf T)i l2 W 0 - n,, , (6.14) 
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F1c. 6 .S . R ate of d evelopment o f insrahilitv for n tri ous valu es o f '" ( - 211 jA ). 

T aking typi cal values of G/n<, = I cm - 1 (1 ° 0 Supersa turati on and Ö= 10 
cm) and 1 = 3 x 10- "cm (V." = 40 cm ~ mol e - 1• y = 10 5 J crn ~ and '/' -
150001\.) g ivcs a 1·a luc of w,, :::: 6 x ]()3 crn - 1• :\ plot in Fi g. 6 .5 of i /< for 
various va lucs of w using th e sa rne parametc rs ,,·ith ~·o = 10- n cm s - 1 sho\\'::; 
th at a parti cul a r ,,.a,·el ength ,,·ill tend to becom e dom in ant if g ro 11·th occurs 
under unstable conditions. In the example chosen , the maxi rn um 1·alu e o f 
w is about 3 x 103 cm - 1 so th at thc co rresponcling 11·ayelength is in th c 
region of 20 ,um . Som c confirmati on of thi s prcdi ction is pro1·id ed by th c 
surface structure of a G dA10,1 c rystal sh01m in Fi g. 6.6. Thc surface sho11·s 

f'1 c. 6.6 . Periodic soh ·ent inclusions on surface of Gd .-\1 0 , d ue to intc rrupti on 
o f stirring a t thc end o f g rowth L'Xpe rimcnt (Scheel and F.lwe ll , I CJ7.1a ). 
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an inclusiun structure which exhibits a fine periodicity of approximately 
30 /Am. A transicnt instability in this case rcsulted from the ccssation of 
stirring at thc termination of growth prior to removal of the cxccss 
solution . 

For ,·alues of w greater than w," i /E is negati\'c and so the pcrturbation 
tcncls to clecay; thc interface is thereforc unstablc against perturbations 
of rclati\-ely long \\a\'elength . Thc stability rangc is increased if the solute 
gradient G is small and if thc capillary constant r is !arge. Absolute 
stability, for all valucs of w, requires that G = 0 which is incompatiblc with 
\·olume diffusion (ancl \\·ould also rcquirc ·r" = () under thc conditions 
assumed !) . 

.-\dclitional stability is obtaincd if surfacc diffusion of the solute is 
inclucled sincc this ,,·ill tend to smooth out any disturbancc by transporting 
solutc from thc "hills" to the "valleys". The inclusion of surface diffusion 
i ntroduces an additional term so that Eqn (6.12) becomes 

·; D (c r .• TD, ilw'
1
) . 

E E = p - n _.. l w- - D w Sln wy ( 6.15) 

whcrc D, is the surface-diffusion coefficient and J1 thc thickncss of the 
adsorption layer in which this diffusion occurs. 

In the general case, the growth rate is determined partly by interface 
kinctics and Eqn (6.10) will no Iongei be valid. I f the linear growth rate is 
specified in terms of the kinetic coefficient F such that ~· = F(n, - n,), as in 
Section 6.2, an extension of the analysis outlined abo\-c Ieads to an ex­
pression for thc growth of the protuberance 

i = (I - Tn,e w~G)wn·" (6.16) 
(1 + Dw/F) 

in which surface ditfusion has been neglected. This equation reduces to 
Eqn (6.13) in the volume-diffusion regime where Dw jF< I. 

I t is seen that, according to this treatment, the condition for stability 
is the same as in the diffusion-controlled case since the boundary between 
i < 0 and i > 0 is still given by Eqn (6.14). As Dw/F increases, so i /el'0 will 
decrease and the principal effect of kinetic control will be to reduce the 
rate of development of the instability . 

. \ccording to the above model, the instability condition applies to all 
values of w below w 0 and thercfore to all wavelengths above the corre­
sponding value ,\" = 21T jw0 • However, the model must break down at long 
wavelengths since it requires redistribution of solute due to a pcrturbation 
of \\.a\·elength t\ o\·cr a distancc of thl· ordcr of A. This redistribution must 
occur by volume ditfusion and so thc modelbreaksdown when ,\ <,(DT)11\ 

where (DT) 1 1 ~ is the mean displacement due to diffusion. At higher values 
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of ,\, stabilization will be present because of surface tension but there will 
be no enhancement of the solute gradient to give instability. Since 
(DT) 112 ""'8, the wavelength region over which growth is unstablc will be 
given by 

(6.17a) 

Since G ~ (ancfo).:: (an,cfo), this condition may alternativcly bc exprcssed as 

(rö)I / ~ 
0 > ,\ > 27T ---;; (6.17b) 

An alternative stability condition is thereforc that 21r(Toja) 1 1 ~ > 8 or, as is 
equivalent, 

47T2r 
a <~s (6.1 ~) 

The maximum Supersaturation required by this condition is, howevcr, 
unreasonabJy JOW. If r:::: 3 X J u -~ Ctn and 0:::: 1 U- 2 cm as in the examplc 
above, Eqn (6.18) requires that a< l x 10- 4 which would correspond to an 
extremely slow growth rate. 

In summary, Shewmon's treatment predicts that a planar crystal surfacc 
is unstable towards perturbations above some critical value of the order of 
10 flm. Stability is enhanced by surface diffusion but not by surfacc 
kinetics, although the latter retards the development of the instability. The 
main success of this approach is in the prediction of a periodic structure of 
,,·avelength about 20 flm when growth is unstable, but it does not yield a 
criterion for stable growth "'·hich may be used in practice. 

The effect of interface kinetics on the stability of a plane interface "·as 
considered by Tarshis and Tiller ( 196 7). They concluded that kinctics "-ill 
stabilize the interface, but only under source-limited growth conditions. 

C. Stabi/ization due to facetting. The most important factor which has 
been neglected in the above treatment is the normal tendency of solution­
grown crystals to develop habit faces. Such faces have a characteristically 
low energy and it may be expected that the development of a perturbation 
on such faces will be more difficult than on non-habit faces since pro­
tuberances will involve the formation of surfaces of relatively high energy. 

The stability of habit faces has been discussed qualitatively by O'Hara 
et a/. (1968), who consicler both kinetic and capillarity effects. If growth 
on a particular facet is controlled by a single active centre which generates 
a growth spiral, then a perturbation which tcnds tu incrcase thc small angle 
between the resulting vicinal face and the crystallographic habit face will 
also increase the number of layer eclges per unit area. The lateral motion 
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nf thc:-;c nlgc:-; \\·ill CIIISe the surfat"l' to rc\-ert back IO\\·ards tht· original 
genrnctry \\·ith the separation het\\Tl'll adjaccnt spiral arms gin·n by J<Jr'* 
according to the BCF theory (see Chaptt:r 4) . Capillarity tends to stabilizc 
a fact:t when the growth is strongly anisotropic, particularly ,,·hen the 
energy minimum in the \ '\"ulff plot is Yery sharp. This effect can be en­
hanced by non-isotropic adsorption of impurities, which could explain 
why the ad.dition of impurities may sometimes result in impro\·ement in 
crystal quality. 

The stability of polyhedral crystals has been considered in more detail 
by Chernov (1972) in a review of morphological stability. ChernO\· 
explains the stability of facetted crystals in terms of the anisotropy of the 
surface processes. A ridge or hollow produced by some fluctuation on an 
anisotropic surface has along its edges much higher kinetic coefficients 
than at the vertex, so that it expands tangentially at a rapid rate relative to 
the normal growth direction. This anisotropy invalidates the use of a 
perturhation approach. 

Of particular importance when polyhedral crystals (as distinct from a 
plane surface of unspecified extent) are considered. is the difference in 
supersaturation between the corners and face centres. The Yariation in 
supersaturation across a crystal face was measured, for example, by Bunn 
( 1949) ( see Chapter 4) and was found to be about 25° ~ in the case of sodium 
chlorate. According to Chernov, this supersaturation inhomogeneity is 
compensated by the development of vicinal faces as indicated in Fig. 6.7. 
The slope at the centre of the face to the crystallographic habit face must 
differ from that at the corners by about zo if the increased kinetic co­
efficient at the centre is to balance the lower supersaturation. The super­
saturation inhomogeneity increases as the crystal grows and the curvature 

Superso~uration t 
I 
I 
I 
I 
I 

~ 
y~ 

F1c. 6. 7. Supersaturation inhomogeneity and compensating cun·ature for a 
crystal face (Chernov, 1972). 
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of the crystal must also increase if the face is to remain stable. Chernov's 
condition for instability is that the face centre attains some ma:ximum 
deviation from thc simple crystallographic oricntation such that the 
kinetic coefficient becomes very )arge. This approach gives the ma:ximum 
length I of a crystal having N faces as 

l = D(p., - p;) tan (7r/N) 
2F;E8j(8) 

(6.19) 

where p., and p; are the slope of the crystal face to the crystallographic habit 
plane at the centre and edge, respectively. F is the kinetic coefficient, E a 
measure of the difference in solute concentration between the edges ancl 
the face centre and 8 represents the anisotropy in the growth kinetics. The 
comple:x function f(8) depends on the anisotropy and also on the limiting 
value of (Po- p;). Using typical values of the various parameters, Chernov 
estimates [,.._, I0 - 2 cm for 8 = 2 (a minimum value for a regular polyhedron), 
and I = 1 () -·I cm for 8 = 40. These values are clearly at variance with experi­
ment by one or two orders of magnitude. 

A factor not considered by Chernov which could increase the maximum 
size for stable growth is the tendency for dislocations to propagate in 
bundles radiating either from a seed crystal or from the nucleation centre 
towards the centre of the crystal faces rather than towards the corners. 
This tendency is illustrated in Figs 4.28(a) and (b) which show the surface 
of a large GdAI03 crystal grown by spontaneaus nucleation (Scheel ancl 
EI weil, 1973b ). The high concentration of defects at the centre of the face 
is clearly correlated in extent with the dendritic core of the crystal, while 
the outer regions of the face are relatively free from defects. 

The main technique which has been used to demoostrate this tendency 
of dislocation propagation towards face centres isthat of X-ray topography, 
which will be discussed in detail in Chapter 9. In the topograph shown in 
Fig. 6.8, which is fairl y typical, the dislocation bundles are re\"ealed a!' 
white streaks and the preferential propagation towards the face centrcs i!' 
clearly noticeable. 

If the crystal does contain a higher concentration of active sites near the 
face centres, an enhanced departure from the habit plane will be un­
necessary and crystals will be able to grow to greater size than that pre­
dicted by ChernoY without the development of excessive curvature. 
However, the tendency illustrated in Figs. 4.28 and 6.8 is by no means 
universal and alternative sources of stabilization must be considered. 

Cahn (1967) also treated the stability of a habit face with growth by 
layer propagation but took as his stability condition the requirement that 
the Supersaturation must not fall to zero at the face centre. By assuming 
that the solute is transported over the surface only by volume diffusion, 
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d is loca ti ons rad ia t in g from the seed ( \ "e rg noux et al ., 197 1 ). 

C ahn a rrin:d a t an t:x prcssion fo r th c maximum sizc of a c rystal for stabl c 
g rO\\·th 

1 = f) (n", -_nr) . 
7.. p 

(6. 20) 

\\"ith /) = 10 5 cm "s 1, 11" 1 - li ,.= ) x JO - "gcm :1 ~: · = 10 ·'cm s- 1 and 
p= S gm cm - :3, Eqn (6.20) g i, es 1= 2 x I0 - 3 cm ''hi ch is aga in mu ch too 
small in rc lati on to experim ent. 

Th c m ost likely ca usc of thc !a rge di sc repancy bct\\"Ccn C hcrn O\·'s o r 
Ca hn 's trca tm ent an cl cxperiment is in th e ass umpti on th at the fl o,,· o f 
soh -c nt bctwcen thc cdgt:s ancl cc ntrc of the crystal faces occurs onl y by 
, ·o!umc diflu s ion. Thc prin ciplc th at thc cl itfcrcncc in Supersa turati on 
bct,,·een th c ecl ges an cl centre of a facc Iea ds to instability is likcly to bc 
co rrect , but com ·ecti\·e Ao,,· must bc taken into account in any rea listi c 
estimate of th e maximum stablc s izc. 'l'hc import ance of so luti on Ao,,· \\"ill 
be conside red in the next sccti on . 
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D. Velocity gradient. An alternative and attractively simple method of 
treating the effect of surface kinetics on stability was proposed by Brice 
(1969). If a crystal is growing in the z direction at a stable rate v, the 
condition for stability proposed by Brice is that a projection will grow less 
rapidly and a depression more rapidly than the rest of the surface. This 
requires that the velocity gradient should be negative, that isthat 

dv 
-d < 0. z 

(6.21) 

If it is assumed that the crystal is grov.ring at a rate determined by thc 
BCF formula [Eqn (4.42a)] written in the form 

~· = A(n'"- n .)~ T2 exp (- B/RT), 
n. 

then differentiation and substitution into Eqn (6.21) gives 

[(
2 B ) d T 2 dn Zn~ d TJ 

T T + RT2 dz + (r~ ,.-~~) dz - (n ., ,. - n. ) dz < U. 

With p~'fD substituted for dn/dz from Eqn (4.13), the stability condition 
becomes 

DdT[n., ,.~ ( )(1 B )] 
z"< p dz Rii- n,"- n,. 1· + RP (6.22) 

which is the same as Eqn (6.6) except for the second term in thc squarc 
bracket. This term in fact reduces the maximum stable growth rate by 
about 35% if B is taken to ha,·e a value of 20 kJ jmole. lt would be of 
interest to extend this model to treat the stability of a reetangular pro­
tuberance considering both its movement along and normal to the crystal 
surface, and the results of the abO\·e one-dimensional approach must bc 
treated with caution. The various treatments of the effect of interfacc 
kinetics are secn tobe somewhat confticting. 

6.2. Solution Flow and Stability 
An increase in the rate of ftow of solution past a crystal surface has t\\·o 
main effects. I t will even out the distribution of solute over the surfacc 
and will reduce the thickness of the boundary layer. The first effect, as 
argued in the previous section, will Iead to enhanced stability for a poly­
hedral crystal, but the beneficial effect of the reduced boundary-layer 
thickness is not so obvious and will be discussed first. 

According to the concept of a metastable region of supersaturation 
gradient, stirring may Iead to an enhancement of stability even of an 
infinite plane surface. The distribution of solute and the temperature 
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Ftc. 6.9. (a) Solute concentration ahead of crystal growing in stirred solution 
(b) Metastahle region of supersaturation gradient in stirred solution (compare 
Figs 6.3(a) and (b)) (Scheel and Elwdl, 1973a). 

relationships ahead of the interface are shown in Figs 6.9(a) and (b), which 
may be compared with the corresponding diagrams for an unstirred 
solution shown in Figs 6.3(a) and (b). The interface concentration 11; will 
exceed thc equilibrium value as interface-kinetic control becomes dominant 
and the solute gradientwill depend, to a good approximation, on (n," - n;) j8. 
Thus, although 8 decreases with stirring, there is a corresponding decrease 
in the width of 8r of the thermal boundary layer. So if the temperatures of 
the crystal surface and the bulk solution remain constant, stabilization 
results since the temperarute gradient is steepened by stirring to a greater 
t:xtent than the solute gradient. This additional stabilization is a r esult of 
the enhanced degree of interface control, which determines the growth rate 
'1" (see Eqn. 6.3) . 

Tiller ( 1968) reached the opposite conclusion, namely that stirring Ieads 
11 
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to reduced stability in the case of an infinite plane surfacc. This conclusion 
will apply to cases where the temperature control is such that thc increasc 
in solute gradicnt is not compcnsatcd by an incrcascd tcmpcraturc gradicnt. 
Hurle (1961) examined the conditions for stable growth in the case of a 
rotating crystal and concluded that the supersaturation gradient is in­
dependent of the crystal rotation rate. 

The theory of interface stability during growth from stirred melts was 
also considered by Delves (1968) and by Hurle (1969), who used a per­
turbation analysis. Delves concluded that the interface may be stabilizcd 
by fast stirring if the liquid is slightly supercooled. Under conditions near 
to instability, a self-excited oscillatory motion ofthe interfacewas predicted, 
with a wavelength of 30 !J-ITI in the example quoted. This result is very 
similar to that of Shewmon which was discussed in Section 6.1.2. H urlc 
also concluded that the effect of stirring on the stability of a plane interfacc 
is small, ancl found that there is no condition of absolute stability in a 
stirred solution. 

When crystals of finite size are considered, the important conclition i~ 

that growth shoulcl be uniform over the whole surface. As discussecl in thc 
previous section, instability will result if the Supersaturation falls to zero 
at the centre of a face, ancl the probability that this will occur is clearly 
much reclucecl in a Aowing solution. The problem of the maximum size of 
a crystal face for stable growth has been considered by Carlson ( 195~) 
who assumecl a region of laminar Aow between the surface and the bulk 
solution. For the crystal to grow at a uniform rate, the concentration was 
assumecl to Yary ,,·ith the distance y from the leading edge according to 

(6.23) 

,,·hcrc h is independcnt of 11 or y. The maximum length I of the face fnr 
stablc grO\\·th is then determined by the condition that thc surLICL' con­
centration should not fall beim' the cquilibrium \·aluc. This giYc~ for thc 
limiting \·alue 

(6.24) 

wherc Sc is the Schmidt number TJ fp, 11 D, u the solution Am\· rate and ~- thc 
linear growth rate. With this equation, and assuming similar \·alues for 
D, ~·, n, 11 - n., etc., to those in the previous examples, values of I some two 
orders of magnitude higher than those given by the theory of ChernO\· 
(Eqn (6.19)] or Cahn [Eqn (6.20)] are predictecl. Equation (6.24) therefore 
appears to provide a stability criterion which may be used as a basis for 
practical proceclures for crystal growth under stable conditions, as will bc 
cliscussed further in Section 6.6. 



6. l"UNIJITIONS FOJ{ STAULE l;JW\VTII " __ 
-)) 

6.3. Ultimate Limit of Stable Growth 
A prediction of the constitutional-supercooling or supersaturation-gradient 
approach is that the rnaximum stable growth rate may be increased as the 
tempcrature gradient at the interface is increased. 1-lowe\-cr, experimental 
eYidenee indicates that there exists for any material an ultimate rate of 
stablc gro\\·th \\·hich cannot be exceeded eYen \\·ith a steep temperature 
gradient and a high degree of stirring. 

Data for the stablc growth rates from a number of typical IITS and 
I ,PE growth nperiments ha\-e been listed in Tabk h.1 and in no case \\·as 
this rate found to exeeed significantly 5 x 10- 6 cm s 1, or about 4 mm per 
day. lt is probable that a limiting grmnh rate of this order is imposed by 
surface-kinctic proccsses such as desoh·ation, integration at kinks and 
remm·al of solvent molcCLiles from the surface. In several eases spontaneous 
nucleation of further crystals might Iimit the maximum feasible growth rate. 

Ho\\-e,·er. faster growth rates are possible in crvstal growth from the 
melt and it is clear that the transition from a dilute solution to a pure melt 
is gradual. This implies that higher stable growth rates may be achie,·ed 
in solution gro\\·th if the solt1te concentration is relatively high. This 
conclusion is confirmed by thc work of Belniss et al. (1971 ), \Yho reportcd 
stable grmnh rates of 10 5 cm s - 1 in top seeding experiments using a 
70- 90"(, solt1te concentration. At high values of the growth rate, the re­
mm·al of thc heat of crystallization cannot be neglected as a rate deter­
mining factor. 

Wilcox (1970) has discussed the influence of a temperature gradient 
on crystal facctting. In high temperature gradients, crystals tend to gro\\· 
without facets and it is possible that, in certain systems, e\en higher 
grmnh rat es than thosc of Belruss et al. ( 1971) could be achie,·ed \\·ith 
non-facetted crystals. ·j· 

If crystals are to rcmain facetted, the only possibility of fastET stablc 
gro\\·th than by the usual layer mechanism would appear to be by en­
couraging a high acti,·ity of hillock sources on highly dislocated faces. 
Figure 6.10 shü\vs the !arge activity of growth hillocks on an yttrium iron 
garnet crystal compared with the layer mechanism. The photograph shows 
a surface '' hich normally grows by spreading of layers from relati,·ely fe\\· 
centres. The surface has two raised circular areas due to solution droplets 
\Yhich haYc remained after removal of the bulk of the solution by hot 
pouring. During cooling to room temperature, rapid growth continued on 
these areas and the remaining flux was subsequently remm·ed by dis­
solution. One dropkt showscontimied layer growth \\·ith a raised rim due 

-j- 'l'his conclusion is confirrned by rcsults reportcd by :\lrs. V .. \. Timofee,·a at 
ICCG 4 , Tokyo, 1974. 



TABLE fi.l. Experimentally Obsen·ed Growth Rates in Crystal Growth from HTS 

Crystal Solvent 

Ba,Zn,Fe,,O" Ha0- 8,0,. 
GdAIO" PbO- PbF,-

NiFe,O, NaFeO, 
NiFe,O, Ba0- -8,0,. 
NiFe,O, PbO- PbF, 
Y,Fe,O,, 8a0- 8,0,. 
Y ,Fe.o" 8a0- 8,0,. 
Y,.Fe ,,O ,, RaO -8,0" 

Growth by liquid phase epitaxy 

AlxGa, . xAs 
GaAs 
GaAs 
Ga, __ ,A I_,.A.s 
lnAs, __ ,Sb 
lnAs, __ ,Sb 
Eu, Er,Ft· ,_,.Ga., _,O,, 

Eu.,_"Y ,_ ,Fe,._,.Ga, _,O" 
Y:~Fe,O" 
Y,Fe,O" 
RFeO,. 

Ga 
Ga 
Ga 
Ga 
ln 
In 
Phü- B,O " 
Bi,O,.- V/> .-. 
PbO- B,O,. 
RaO- R,O" 
Ba0- 8,0,. 
PbO- ll/>" 

8,0,. 

Linear growth 
rateA·s · ' 

200 
-200 

200 
-500 
-260 

120 
ISO 

-ISO 

22 
-140 
-170 
-10 
250 
170 
660 

340 
260 

8 
II 

Remarks 

Pulling from solutinn 
Accelerated crucible 

rotation technique 
Pulling from solution 
Pulling from solution 
Seeded growth from solution 
Seed crystal on ~>ti rrer 
Pulling from solution 
Pulling from solution 

LPE, slow cooling 
LPE, fast cooling 
LPE, slow cooling 
LPE, slow cooling 
LPE, gradient transport 
LPE, gradient transport 
LPE, 30° supercooling 

LPE, slow cooling 
LPE, gradient transport 
LPE, slow cooling 
LPE, slow cooling 

Reference 

AuCoin et al. ( 1966) 
Scheel ( 1972) 

Kunnmann et al. (1963) 
Smith and Elwell (1968) 
Kvapil et al. (1969) 
Laudise et al. ( 1962) 
Linares (1964) 
Kestigian ( 196 7) 

C'l 
:r: 
I 

...; 

81um and Shih ( 1971) ~ 
KangandGreene(1967) ;:g 
Kinoshita et al. (1968) ::o 
Woodall (1972) ~ 
Stringfellow and Greene (1971) ~ 
Stringfellow and Greene (1971) m 

Levinstein et al. (1971) 

Giess et a/. (1972) 
Linares et al. ( 1965) 
Brochier et al. (1972) 
Shick and N ielsen ( 1971) 

(f) 

0 
r 
c: 
...; 

0 
z 
'fl 
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F1c. 6 .1 0 . S urface o f a ga rn et crystal showing growth la yers and two solidified 
so luti on droplets from w hich the so lvent was disso lved . The !a rge droplet shows 
continued laye r g rowth du ring coo lin g , the sm a lle r one the " nu cleati on" of g rowth 
hill ocks (Schee l and Elwe ll , 1973b). 

to fast e r cooling and crystalli zation in that region. On the other droplet 
m any hillocks have been nuclea ted and the resulting regi on appears to be 
inclusion-free in sp ite of th e rapid growth. An increase in growth rate of 
bulk crystal s by thi s m echanism would clearly be at th e expense of crystal 
qu ality , as measured by the di sloca tion density and impurity incorporation . 

. -\ method of achiev ing fa st growth rates which has been little explorecl 
is the use of a ve ry thin zone of so lvent over the whole crystal surface , 
with so lute suppli ed from the vapour ph ase. The advantage of a ve ry thin 
zone is th at supersa turation gradients would be avo ided, and the use of an 
" ultra-thin" alloy zone for the growth of sili con has been proposed by 
1-1 url e et al. ( 1964, 1967) and by Filby and N ielsen ( 1966 ). 

In \·ie\\. of th e severe Iimitati on imposed by the normally slow growth 
rates used in so luti on growth, any m ethod which could permit an increase 
in th e maximum stable growth rate by a substantia1 factor is worthy of 
im·estiga ti on. The most significant contribution to fast stable growth rates 
is give n , assuming an optimum choi ce of so lvent and growth technique, 
by an adequate temperature gradi ent and suffi cient so lution Aow rates at 
th e grow ing crystal faces. 
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6.4. Experiments on Growth Stability 
Several experiments have been performed, particularly with aqueous 
solutions, with the aim of determining the conditions for stable growth 
andin order to observe the effects of instability. 

The existence of a maximum rate of stable growth and its dependence 
on crystal size was demonstrated as lang ago as 1939 by Yamamoto. 
He measured the critical growth rate of alkali halide crystals of various 
sizes growing in aqueous solution. The incidence of inclusions at the 
higher growth rates was found by microscopic observation to depend 
upon the spreading of layers across the crystal face. Under stable con­
ditions, only one layer could be seen to be advancing across a given face 
at any time. Unstable conditions leading to inclusion formation could be 
correlated with the formation of successive layers before a previous layer 
had reached the edge of the crystal. Yamamoto's observations led him to 
propose that the maximum rate of stable gro\\'th decreases in proportion 
to the area of the crystal face. 

The decrease in the maximum stable growth rate with crystal size was 
also stressed by Egli and Zerfass (1949) ancl by Egli (1958), although 
quantitative data were not given. 

Detailed studies were made by Denhigh and \\'hite (1966) of the grO\\th 
stability of hexamethylenetetramine. They found no inclusions in the 
centrat 65 f.Lm of crystals and concluded that this represents a critical size 
below which inclusions are not formed, irrespective of the growth con­
ditions. The incidence of inclusions in !arger crystals confirmecl the 
nlidity of a critical growth rate, which has a value of about 2 x I 0- 5 cm s - I 

for this material. The critical growth rate was substantially independent of 
the stirring rate for the small crystals grown (-. 10 - t cm), but inclusions 
were not observecl when the stirring rate was n:ry high . In the batch 
system usecl, however, the main effect of stirring was to increasc tht· 
nucleation rate ancl hence to reduce the crystal size .. -\quantitative inYesti­
gation was also made by .-\lexandru ( 1972) of the stability of Rochelle salt. 
The crystals used in this case were !arge, up to 600 g in weight, in cantrast 
to the relatively small crystals stuclied by Yamamoto ( 1939) ancl Denhigh 
and White (1966). The measurements were made under conditions of 
fairly rapid solution flow. Alexandru found that the maximum stable 
growth rate varies in inverse proportion to the length of the crystal face . 
As with Yamamoto's observations, stability was believed to be correlatcd 
with the rate of movement of layers across the crystals and was influenccd 
by the presence of impurities in the solution. The stability conclition 
could also be expressed in terms of a maximum Supersaturation a 111 ,.,,, 

which was related to the face length by an expression of the form 
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\\'hen a ~ccd crystal of kngth x" \\·as uscd, a nwdificd rclation 

h 
Gmax = a + ---­

.\: - ,\'" 
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(6.25a) 

(6.25b) 

\\as found to fit thc data . lt is perhaps surprising that the maximum 
supersaturation for a giYen crystal size should depend on the prc,·ious 
history of the crystal, and these Observations indicate th e importancc of 
the distribution of dislocations in the crystal. 

Relati,·ely fe,,· measurcments have been made of maximum stable growth 
ratcs in high-temperature solution but \\ientorf (1lJ71) rcachcd thc samc 
conclusion for the growth of diamond as die! Alexanclru for Rochelle salt, 
na111ely that the stable growth rate shoulcl decrease im-ersely as thc 
diarnctcr of thc crystal. Fora 1 rnrn cryst;ll, th<:> maximum growth rate was 
found to be about 0.2 111111 hr - 1, decreasing to 0.04 mm hr 1 when the 
crystal reachecl its 111axi111u111 size of 5 mm. 

ßruton ( 1971) studied the stability of growth of Iead tantalatc, PbTatO,;, 
by top seeding from a Pb 2V20 7 flux under conditions which were believed 
tobe turbulent. According to Carlson's criterion [Eqn(6.24)] thc maximum 
sizc of crystal for stable gro\\·th was calculated to be 1.2 cm. ] n practice 
inclusion-free crystals rarely grew !arger than 4 x 2 x 1 111111, and !arger 
crystals usually contained many inclusions. 

Dawson et al. (1974) measured the growth rate and inclusion concen­
tration of NaNb0 3 grown on a rotating seed in NaB0 2 as a function of the 
temperature difference across the melt. The results are shown in Fig. 6.11. 
The growth rate varies approximately as L1 T 2 and extrapolates to rather a 
!arge value at L1 T = 0 because of solvent evaporation. Also shown in Fig. 
(>.11(a) is the line ,,·hich is believed to denote the boundary between stable 
and unstable growth. The justification for this particular choice of stability 
condition is that the ,·ariation with L1 T of the inclusion concentration is 
very similar to a plot of the clifference between the actual growth rate and 
the value gi,·en by this boundary line, as may be seen from Fig. 6.11(b). 

The stability condition represented by the boundary in Fig. 6.11(a) is 
in good agreement with the supersaturation-gradient concept, if it is 
assumed that thc temperature graclient at the crystal surface \·aries directl y 
as L!T. From Eqn (6.6), ('-'·fL1T) > (D4>n ,jpRPL1z) for instability, \\here 
Llz is the length owr which the temperature drop occurs. 1f Llz is taken to 
be the depth of the melt (2 .3cm) with D = 4 x 10- 5 cm 2 s - 1, 4> = 59kJ 
mole - ', p = 4.44gcm - 3 , ll e= l.77gcm- a, T = 1378K (all measured ex­
perimental values), the value predicted for z'/LlT is 12 x IO - !Icms- 1 K - 1

• 
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F1c. 6.11. (a) Growth rate of NaNb0 3 on a rotating seed in NaBO, solution , 
with estimated Iimit of stable growth . (b) Solvent inclusions concentration and 
excess growth rate above estimated Iimit for NaNbO, (Dawson et al., 1974). 
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'l'his is much lower th an th e ex perim ental va lu c of 5 .3 x 10- 7 cm s - 1 K - 1
• 

Howe,-e r , ifthe temperature is assumed , du e to stirring in th e bulk so lution, 
to be dropped o,·er a th ermal bound ary laye r of \\·idth 8(ScjPr) 1 

\ wh ere 
Sc is th c Schmidt mimber and Pr th e Prandtl number, a va lue in the region 
of 5 x I 0- 7 cm s- 1 K - 1 for ~"/iJ 7' is predi cted by th c supe rsa turation-grad ient 
mode l. U nfortun ate ly a direct m easu rem ent of the temperature g radi ent 
at th e inte rfa ce was not poss ible, but th ese results strongly support th e 
,·alidity of th e supersa turati on-gradi ent approach . 

6.5. Results of Unstable Growth 
Sin cc stab le g rowth has been defincd in th c prcscnt contex t as growth 
without so h ·ent inclu sions, it is clea r th at instability \\·ill result in inclusions . 
\\"h at is interesting is to consider th e cxtent to ,,·hi ch th c quantative and 
qua litatiYe m odels discussed above ca n account for th e obse rved featu res 
which result fr om the onset of instability. 

Th e developm ent of a peri odi c di sturbancc has alrea dy been d iscussed 
in Secti on 6. 1. 2 and exa mples of th eo reti ca l treatments which predi ct thi s 
periodicity havc been mentioned . Anoth e r obse rva tion of a crystal with 
periodic in clus ion is illustrated in Fig. 6 .12, which shows a section para lle l 
to the growth directi on of a NaNb03 c rystal g rown by top secd ing ( Da\\·son 
et al. , 1974). As in fig. 6.6, th c instab ility has occurred at th c termination 

, I 

f • , 

~mm 
/ ' 

F 1G . 6. 12. Secti on through NaNbO , showing peri odic inc1usion stru cture 
(Dawson et a/ ., 1974). 
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of g rowth , poss ibly fo llowing removal from the solution. T he per iod tn 
thi s case is about 80 !J-111 . 

A cellular interface similar in appea rance to that obse rved on melt­
g rown crystals under unstable conditions was reported by Hurl e et al. 
(1962) on crystals of InSb grown from solution in a Supersatu ra tion 
gradi ent and recentl y by Schieber and E ieleiberg (1973 ) on crystals of 
BaFe 12Ü 19 • T he cells in the latter case we re believed to be due to pl atinu m 
segregation . 

Another exa mple of a crystal with peri odi c inclus ions, in thi s casc 
DyV04 grown by slow cooling by Ga rton and \Vanklyn (1969), is shown 
in F ig. 6. 13. It is by no means certain th at th e periodicity in thi s case is 
due to excitation of th e Ionger face since the periodicity may we il be in 
th e g rowth d irecti on . Landa u ( 1958) has predi cted th at , uncler constitu­
tionally supercoolecl conclitions, the growth rate may va ry periocli ca ll y, 
resulting in a peri oclic cl istribution of impu riti es. The peri oclic ity is ca usecl 
by th e lowering of th e clegree of constitutional supe rcooling by an interva l 
of unstable growth with inclusion formation , so th at an interva l o f stable 
g rowth follows cl uring whi ch the instability builcls u p to som e criti ca l va lu e 
ancl the cycle is re-initi atecl. T his moclel coulcl accoLtnt for some of th e 
stri ati ons ancl bancls of incl usions whi ch are obse rvecl in HTS-grown 
crystals (see Chapter 9) but has not founcl wicle acceptance. 

Parti cularl y uncler diffusion-limitecl conclitions, th e higher su persa tura-

. • c-; 

." . 

F tc . 6. 13. DyVO, crystal with period ic inclusions (Ga rton and Wankl yn , 1969) . 
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tion at the corners and cdges of a crystal will Iead to an onset of more rapid 
gruwth in these rcgions as thc dcgrce of constitutional supnsaturation is 
increascd . :\ progn:ssi\T incrcasc in tl1c supersaturation gradicnt Ieads first 
to thc formation of raised edges, then to thc de\·elopment of terraces or 
"hopper" crystals and finally to elendrite formation with projections in thc 
directions of rapid growth. This sequence is illustrated in Fig. 6.14 \\·hich 
is taken from the paper of Fredriksson ( 1971 ), who discusses the mor­
phology of meta! crystals as a function of the growth conditions. 

6) 
a) 

F1c. 6.14. (a)-(d) Progressive changcs in shape nf an ideally cuhic cn·stal with 
increasing degree of supersaturation gradient (Fredriksson, 1971 ). 

I f growth occurs by a mechanism of layer spreading from corners and 
edges, it is very probable that the inclusions will be formed at thc facc 
centrcs of the crystal where the Supersaturation is low. This has been 
confirmed by several observations by the authors, by the work of Carlson 
( 1lJ5X) on aqueous solution growth and, for example, by Lefcver anti 
Chase ( 1%2) on yttrium iron garnet. A more detailed description of thc 
typt·s of inclusion found in crystals grown from I ITS will he gi\Til in 
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Chaptcr 9. Many cxamplcR of thc tranRition from thc normal habit form tn 
Rkelctal and similar crystal shapcs arc quotcd in thc rcvicw by Chcrnm· 
(1972). 

6.6. Experimental Conditions for Stable Growth 

6.6.1. Optimum programming for stable growth 
The essential criterion for stable growth is that the growth rate should 
always lie below the maximum stable value, with a "safety margin" to 
allow for temperature fluctuations due to imperfect regulation or to con­
vection overstability in the solution. 

Scheel and EI weil ( 1972) and Pohl and Scheel ( 1975) presentecl a tem­
perature programme for the growth of crystals by slow cooling, with thc 
stable gro\vth rate estimated accorcling to Carlson's criterion which was 
discussed in Section 6.5. Rearrangement of Eqn (6.24) gives the maximum 
stahle growth rate 7' 111 ax = d/ 2dt for a crystal of siele I as 

~·rnax = ßn,. ·, 11 ((J.26) 

with ((1.27) 

Here n,. is the solubility at temperature T, and a is the relative super­
saturation (n,,. -n .. )/n,. which is assumed to remain constant throughout the 
crystallization process. The crystal volume is 

f3 = (110- n,.) V p, (6.2S) 

where n0 is the initial solubility at timet = 0 and V the volume of thc solution. 
Combination of (6.26) and (6 .27) yields after integration 

This equation clefines the temperature T as a function of the time t if the 
solubility curve is known and the Supersaturation is given a Yalue below 
some criticallimit. 

An example of a cooling programme based on Eqn (6.29) is shown as 
curve III in Fig. 6.15(a). The parameters assumed are: solution volume 
V=80 cm 3, p = p," =5 g cm - 3, n=15% at 1600 K and 5% at 1300 K, D = 
10-5 cm 2 s - I, a = 10- 2, Sc= 420 and u = 10 cm s - 1• lt may be seen that the 
deviation of the calculated programme from a constant cooling rate [I I of 
Fig. 6.15(a)] is relatively slight except at the early stage where the crystal is 
ve ry small. The corresponding growth rat es are shown in Fig. 6.15( b) 
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Fu:. IJ.I .5. (a) TernpcratUI'l' programmcs for IITS growth hy slow cooling. 
constant linear growth rate ; II constant cooling rate; III for maximum stable 

growth rate according to Eqn (6.29). (b) Linear g rowth rate for programmes 1-l 1l 
(Scheel and Elwell , 1972). 
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from which it is clear that the initial growth rate in case li is much highcr 
than the limiting value, which explains the frequent observation of a 
dendritic core in !arge crystals grown by spontaneaus nucleation. 

Curve I of Fig. 6.15(a) is based on the assumption of a constant linear 
growth rate, in which case the temperature change from the initial valuc 
will vary as t 3• Several proposals for temperature programmes (Neuhaus 
and Liebertz, 1962; Koldobskaya and Gavrilova, 1962; Sasaki and Matsuo, 
1963; Bibr and Kvapil, 1964; Kvapil, 1966; Cobb and Wallis, 1967; 
Kvapil et al., 1969; Fleteherand Small, 1972; Wood and \Vhitc, 1972) havc 
been based on the use of a constant linear growth rate, but it is clear from 
Fig. 6.15(b) that the growth rate may cxceed the maximum stablc valuc 
during the later stages of growth unless the constant valuc is initially weil 
below the stable Iimit. 

Figure 6.16 shows the effect of viscosity, solution flow rate and cruciblc 
size on the temperature programme calculated using Eqn (6.29) with 
otherwise the same parameters as in the previous example. A total duration 
of 10a hours (about 6 weeks) is considered acceptable but twice this valuc 
would probably be prohibitive. A rapid solution flow rate can be seen to be 
essential if one !arge crystal is to be grown. Large crucibles are unlikely to 
result in one crystal per run but stable growth is possible if multinucleation 
is taken into account. The effect of flux viscosity is seen to be relativcly 

1500 

1400 

TEMPERATURE (K) 

u = 0.1 cm s- 1 

TJ = 20 cp 
V= 4000crri 

1300~----~------~-L~--~~--~~----~--

0 2 3 4 5 
logt (hr) ----

f'1c . 6.1 (,. Tempcrature programmes according to Eqn (6.29) for various values 
of solution ftow rate u, viscosity 1) and solution volume V (Scheel and Elwdl, 
1972). 
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minor, but it is unlikely that high valucs of solution ftow rate will be 
possible in viscou~ ~oh·ents. 

Thc ~lowc~t cooling ratcs must bc u~nl in thc carly stag~: following 
nucleation and a considerable saving in time without the onset of unstable 
growth can be achieved by the use of seed crystals. The initial cooling rate 
with a seed crystal will be chosen to correspond to the maximum stable 
growth rate for the particular size of seed chosen. 

The programme specified by Eqn (6.29) was calculated on the basis that 
the growth rate should at all times have its maximum stable value. In 
practicc it is desirable to use a growth rate which is less than the maximum 
value by a sufficient margin to allow for minor temperature ftuctuations 
within the solution. The best temperature regulation which can be 
obtaincd with commercial controllers is about "' 0.1 oc and, in the example 
considcred above, a sudden drop of 0.1 oc would result in the deposition 
of about 13 mg of solute. If this drop were to occur in 10 s on a crystal of 
arca 1 cm 2, the resulting growth rate would be 3 x 10- 4 cm s- 1, which is 
two ordcrs higher than the maximum stable value! In practice the super­
saturation is created throughout the melt and the elfect of the temperaturc 
drop is much less drastic, but sudden temperature drops of zoc may occur 
when cooling is elfected by a motor-driven helipot or sirnilar mechanical 
rneans. This shows that excellent temperature control and programming 
are necessary when !arge inclusion-free crystals aretobe grown. 

Curve I of Fig. 6.17 shows the cooling rate according to the programme 
of Fig. 6.15 (curve Ill) and a less idealized practical procedure is indicated 
by the dotted line I I. The actual values of the cooling rate proposed in this 
example are: 0.2°C hr - 1 for the first 48 hr, 0.5 °C hr - 1 for the next 24 hr 
and 1.2°C hr - 1 for the remainder of the growth period, about 220 hr. 
Those values are chosen to give a reasonable safety rnargin, except for the 
initial value which is selected on the basis that it is pointless to use a cooling 
rate which is not at least comparable with the randorn ftuctuations (Laudise, 
1963). The increase in time required by the proposed procedure is about 
75 hr or 25 % . 

Also shown in Fig. 6.17 as curve II I is the cooling rate required by the 
programme of Eqn (6.29) for the sarne conditions as for curve I but with 
11 = 0.1 crn s - 1

, a value typical of stirring by natural convection. The 
maxirnum stable value in this case is only 0.175 °C hr - 1 and the total time 
required by the prograrnme is about 100 days. Since such a period would 
bc unacceptable to most crystal growers we propose the use of a constant 
cooling rate of 0.2 or 0.3°C hr - 1 for experiments using unstirred melts. 
Such a cooling rate will probably result in rnore than one crystal but should 
yield only a few crystals with substantial inclusion-free regions. 

Tcmperature programming for the growth of crystals in industrial 
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crystallizers has becn discussed by Mullin and Nyvlt (1971), and Wood 
and Whitc (!9oS) advocatcd thc usc of programming in crystal growth by 
flux cvaporation in onler to achicvc a constant linear gro\>vth rate. How­
ever, the linear growth rate has to decrease according to Scheel and Elwell 
(1972), and the flux evaporation rate should be programmed according to 
the maximum stable growth rate . In certain cases a constant linear growth 
rate might be necessary, for instance for homogeneaus doping. Constant 
growth conditions necessitate, according to the Burton-Prim-Siichter 
equation for the effective distribution coefficient, a nonvarying boundary-
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F1c. 6.17. Cooling rates for stable growth . I as for programme I I I of Fig . 
6.16(a); I I suggested practical procedure; III for an unstirred solution (Scheel and 
Elwell, 1972). 

layer thickness and therefore a nonvarying area of the growing crystal face. 
These conditions are only fulfi.lled in liquid phase epitaxy and in such 
cases where the application of !arge seed plates is possible and crystal 
growth occurs mainly in the direction normal to the seed plate by proper 
choice of the seed orientation. In any case a value of a constant linear growth 
rate has to be chosen which is equal to or lower than the maximum stable 
growth rate for the final crystal size. From this discussion it follows that it 
is difficult to obtain the quasi-steady-state conditions necessary for the 
growth of !arge crystals of homogeneaus dopant concentration or of 
homogeneaus solid solutions, and the experimental conditions required 
are discussed in the next chapter. 
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6.6.2. Stirring in flux growth 
Thc desirability of stirring for the achievement of stable growth at rela­
tively rapid rates has been mentioned in the discussion of the examples in 
Section 6.4, and stirring techniques are discussed in the next chapter. 
In the great majority of experiments, some stirring action is achieved by 
natural convection. The role of natural convection in crystal growth has 
been reviewed by Cobb and Vlallis (1967), Parker (1970), Wilcox (1971), 
and Schulz-Dubois (1972). 

The onset of convection is normally specifi.ed (Chandrasekhar, 1961) 
by thc Yalue of the climensionless Rayleigh m1mber 

ga.VLJT 
R=K-;- (6.3Ua) 

\\·hcrc !X is the Yolume cxpansion coefficient, L the dcpth, K thc thermal 
diffusi,·ity and ,. the kinematic vi~co~ity of the liquid, "·ith iJ T the tempera­
turc clifference across it. Some critical value of R, depending on an idealized 
geometry, must be exceedecl for convection while higher values of R may 
Iead to temperature oscillations, or to turbulence at even higher values. 
However, in real crystal-growth systems some convection w·ill occur below 
the critical R values due to some inevitable asymmetric or reYerse tem­
pcrature gradients clue to buoyancy. 

In solutions it is also necessary to consicler thermosolutal convection 
d ue to density differences between the solute and solvent. The onset of 
solutal convection may be specifi.ed by dcfi.ning a solutal Rayleigh number 
R" as 

gßVLJn 
R , = --K-

_,v 
(6.3Ub) 

whcrc ß is the rate of change of density with concentration, LJn the solute 
concentration difference across the liquid and K, the diffusivity of the 
solute. Since K, is normally lower than the thermal diffusivity K by some 
orders of magnitude, convection is highly probable in solutions even if the 
temperature gradient is in the "wrong" direction. Oscillations are par­
ticularly likely in solution due, for example, to "overstability" which can 
occur when a destabilizing temperature gradient is opposed by a solute 
gradient (Jakcman and Hurle, 1972). 

Even for pure melts, it is difficult to obtain a reliable expression for thc 
rate of convective flow of the liquid. Cobb and Wallis (1967) derived a 
simple expression for the flow rate of a liquid, unbounded in the horizontal 
direction, between horizontal plates differing in temperature by LJ T. The 
a\·erage flo\\- rate u \\·as estimated as 
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u =__!5__ [0.208(R) 1i 4 -1] 
p. ,.LCp 

(6.31) 

where C1• is tht: specific heat of the liquid and R the Rayleigh number. 
Figure 6.18(a) shows the value of u as a function of the liquid depth L for 
various values of the convection parameter a = Rj L 3 and for a fixed valut: 
of LJ T = 10°C. Except for very low values of L, where u increases very 
rapidly, the solution flow rate is seen to remain between roughly 0.01 and 
0.04 cm s- 1• Figure 6.18(b) shows the convection flow rate versus tem­
perature difference LJ T for a typical value of a = 1500. The latter is limiteu 
in a crystal-growth experiment because of nucleation at high values of LJ T, 
and therefore this possibility of increasing u is also limited. Maximum 
rates of thermal convection flow in high-temperature ionic solutions will 
be of the order of 0.1 cm s- 1 and in metallic solutions ont: order of magni­
tude faster. 

From the examples illustrated in Fig. 6.16, it is clear that such values 
of the flow rate are too low for stable growth of a few !arge crystals per 
crucible, and so forced convection by stirring is desirable where possible. 
Stirring may be achieved by rotating a seed crystal as in the top-seeded 
solution-growth (TSSG) technique and the resulting flow patterns havt: 
been studied by Robertson (1966) and Carruthers and Nassau (1968) using 
an aqueous analogue. Stirring may be enhanced by occasional reversal of 
the seed rotation (Miller, 1958; Senhause et al., 1966) or of the crucibk 
rotation direction (Nassau, 1964; Bonner et al., 1965; Schroeder and 
Linares, 1966 ). This TSSG technique is restricted to soh·ents of lo\\ 
volatility and is therefore not applicable to PbOJPbF 2 and many other 
widely used solvents. 

The problem of stirring a corrosive liquid at high temperatures is by no 
means simple. Serious problems are associated with sealing the crucibk 
and stirring the solution in a sealed crucible at high temperatures or with 
the corrosive solvent vapours. The only really effective method proposed 
to date is the accelerated crucible rotation technique (Scheel and Schulz­
DuBois, 1971; Scheel, 1972) in which the rate (and frequently also the 
sense) of crucible rotation is varied continuously (but not abruptly as in 
the crucible reversal mentioned above) and the inertia of the liquid used to 
promote mixing. Experience from aqueous solution growth indicates that 
flow rates of 10-50 cm s- 1 are desirable and the practical realization of such 
conditions will be discussed in the next chapter. 

An alternative approach to the problem of non-uniform solute flow has 
been proposed by Tiller (1968) and is illustrated in Fig. 6.19. He suggested 
the use of a convection-free cell with a seed crystallocated inside a platinum 
tube inserted into a well-mixed solution. Convection is prevented by 
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FH;. 6.19. Convection-free cell (I) in a stirred solution (II) (Tiller, 1968). 

baffies across the end of the tube and a uniform f!0\1 of solute to thc sccd 
by diffusion may be realized. This method does not yet appear to han: 
been tested in practice on Earth but could give stable growth if technical 
problems and problems associatecl 11ith heat conduction through the 
platinum tube (ancl nucleation on the tube) could be solved. The growth 
rate woulcl, however, be appreciably lower than in a stirred solution. 
Interesting results on convection-free growth may bc expected from the 
Skylab experiments where convection cloes not occur due to the near zero 
gra1·ity in space. 

6.6.3. Temperature control and distribution 

The importance has been stressed of using the best possible controller to 
regulate the temperature of the furnace. Commercial controllers using 
saturable core reactors or thyristors can give regulation to ::: 0.1 cc and 
their ready availability has greatly contributed to a continuing improYe­
ment in crystal size ancl quality. However a high degree of control is 
pointless if temperature oscillations clue to convection overstability are 
present in an unstirrecl solution . Smith and Elwell ( 1968) measured 
oscillations of amplitude 0.5 °C in a solution of NiFe20~ in Ba0.0.62B 20:1 

at 1200°C with a melt depth of about 3 cm. The amplitude of these oscilla­
tions was reduced to some extent by rotating the crucible ( see Section 
9.2.4). 

By effective stirring such temperature oscillations coulcl be prevented 
so that exact temperature regulation becomes meaningful. I t is technically 
clifficult to measure small temperature fluctuations in stirred high-tem­
perature solutions but estimates of Schulz-Du Bois ( 1972) ancl Scheel ( 1972) 
inclicate a high degree of temperature homogenization, for instance by the 
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accelerated crucible rotation technique, and this applies also to other 
stirring techniques which dominate the hydrodynamics in the high­
temperature solutions. 

From thc discussion of the supersaturation-gradient criterion it is 
e\·ident that the temperature gradient at the crystal surface is of major 
importancc in determining the crystal quality. In theory a Yery !arge tem­
perature gradient is desirablc so that stable growth will be possible at high 
gro\\th rates but in practice a compromise is always used because of an 
adverse effect on the crystal quality. A !arge gradientwill result in a high 
degrec of strain and so more dislocations will bc produced in the crystal. 
In top-sceded growth ,,·here the temperature gradient at the crystal can be 
varied by changing the depth of the crystallizing interface bclow the 
liquid len~l and by altering the degree of coolant flow through the seed 
holder, a high cooling rate is often found to result in nucleation at th e edges 
of the crystal and it is important to ensure that the radial temperature 
gradient across thc surface of the solution is not too great. 

Similar considerations apply to growth by spontaneaus nucleation ,,·here 
localized cooling is used. Measurements of the optimum temperature 
distribution for the growth of garnet crystals at the base of a crucible have 
been reported by Talksdorf and Welz ( 1972). 

6.6.4. Mechanical disturbances 
Thc concept of a metastablc region of supersaturation gradient suggcsts 
that instability \\ill be favoured if the growing crystal is subjected to 
mechanical shock, ,,·hich will tend to nucleate any instability. This view 
is supported by the experience of the authors with both growth by spon­
taneaus nucleation and by top seeding. In the former case the size of 
inclusion-free regions was found to be increased by a factor greater than 
t,,-o ,,·hen the furnaces were mounted on antivibration supports inside 
closed meta! cabinets. In top-seeded growth, a gradual deterioration in 
crystal quality and an increase in the nucleation of secondary crystals on the 
edge of a seed have been noted as the seed rotation mechanism became 
warn. 

The practical aspects mentioned abO\-e will be discussed more fully in 
the next chapter. 

6.7. Summary 
Theoretical treatments of the growth of spherical and cylindrical crystals 
indicate that these will be stable only up to a critical radius, which will be 
increased by interface kinetics and surface diffusion. 

In the case of a plane crystal surface growing in solution, unstable 
growth may result if therc exists a supersaturation gradient ahead of thc 
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interface. A solute gradient associated with the volume-diffusion proccss 
will inevitably be present and a supersaturation gradient may be avoided 
only by the application of a sufficiently !arge temperature gradient. The 
experimental observation of inclusion-free growth in very small or negative 
temperature gradients may be explained by the assumption of a metastabk 
region of supersaturation gradient. Stabilization is believed to result 
primarily from the kinetic mechanisms on the low-energy habit faces 
normally exhibited by solution-grown crystals. 

An important factor when polyhedral crystals are considered is the 
difference in Supersaturation between the edges and centre of any facc . 
This supersaturation inhomogeneity may be offset by a higher kinetic 
coefficient at the face centres due to curvature of the vicinal face or to a 
higher concentration of active growth centres. Stirring the solution is 
desirable in order to minimize the Supersaturation inhomogeneity. Even 
in well-stirred solutions with a !arge stabilizing temperature gradient, it is 
Iikely that there will exist for any material an ultimate rate of stable growth. 

For the experimental attainment of stable growth, precise temperaturc 
regulation is required and mechanical shocks should be prevented. Thc 
maximum growth rate may be increased by the application of a sufficicntly 
!arge temperature gradient and by stirring the solution. 

A considerable body of evidence has been presented to demoostrate that 
the maximum stable growth rate decreases with increase in crystal sizc. 
Temperature programmes for crystal growth by slow cooling have been 
presented which are based on the requiremcnt that the growth rate should 
never exceed its maximum stablc value. 
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appendix b

lowed by several others but serve to illustrate a need for intensive development so 
that this important technology of LPE can achieve its true potential. This requires 
the education of crystal/epitaxy technologists (Scheel 2003&2004).
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